Data fusion of geotechnical and geophysical data for three-dimensional subsoil schematisations

底土 传感器融合 人工神经网络 随机森林 数据集 插值(计算机图形学) 地质学 算法 土方工程 岩土工程 岩土工程勘察 遥感 数据挖掘 机器学习 人工智能 计算机科学 土壤科学 图像(数学) 土壤水分
作者
Bruno Zuada Coelho,M. Karaoulis
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:53: 101671-101671 被引量:7
标识
DOI:10.1016/j.aei.2022.101671
摘要

Subsoil schematisations are a paramount activity for the execution of infrastructure earthworks. Currently, subsoil schematisations are laborious, and mostly based on correlation and interpolation of available geotechnical and geophysical in-situ data. Geotechnical in-situ testing tends to be accurate but merely provides local information, while geophysical investigations are often performed to image the subsurface, and provide valuable insight for areas. Yet, there is not always a clear way to reflect geophysical properties to soil schematisation. This paper presents a data fusion methodology to perform subsoil schematisation and parametrisation. This methodology makes use of available geotechnical, geological and geophysical data sets, and combines them by means of machine learning algorithms (Neural Networks and Random Forest). The data fusion method is applied on two case studies. The first case study concerns a large area of a flood defence line, and the second case study concerns a small polder area next to a dike. The accuracy of the data fusion algorithm is assessed by comparing its results against a validation data set, that has not been exposed to the data fusion algorithm. The performance of the two algorithms and of the parameters that govern each algorithm is discussed. The results show that both Neural Networks and Random Forest are suitable to perform subsoil schematisations. The analyses show that the Random Forest leads to a lower error on the validation data set. However, Random Forest fails to predict the occurrence of thin clay layers in the second case study, while Neural Networks are successful at it. The data fusion methodology shows the potential to enhance the subsoil schematisation procedure, by increasing the schematisation spatial resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dfghjkl完成签到 ,获得积分10
1秒前
爱听歌半山完成签到,获得积分10
7秒前
caojiarong完成签到,获得积分10
11秒前
小海绵完成签到,获得积分10
14秒前
caojiarong发布了新的文献求助10
16秒前
16秒前
巷陌完成签到 ,获得积分10
17秒前
shz8012发布了新的文献求助30
17秒前
18秒前
harvey完成签到,获得积分20
18秒前
失眠的水云完成签到,获得积分10
19秒前
20秒前
huohuo完成签到,获得积分10
20秒前
WangXiaoze发布了新的文献求助10
21秒前
23秒前
ran发布了新的文献求助10
23秒前
茗茗关注了科研通微信公众号
23秒前
舒适智宸发布了新的文献求助30
27秒前
小苏完成签到,获得积分10
28秒前
ww完成签到,获得积分20
28秒前
30秒前
shz8012完成签到,获得积分10
31秒前
HYX完成签到,获得积分10
32秒前
猪猪hero发布了新的文献求助10
34秒前
乐乐应助WangXiaoze采纳,获得10
34秒前
研友_VZG7GZ应助ran采纳,获得10
34秒前
燕燕于飞发布了新的文献求助10
35秒前
晨光中完成签到,获得积分10
37秒前
太阳完成签到,获得积分10
38秒前
max完成签到,获得积分10
39秒前
茗茗发布了新的文献求助10
41秒前
41秒前
慕青应助caojiarong采纳,获得10
42秒前
47秒前
猪猪hero应助繁星与北斗采纳,获得10
48秒前
ky完成签到,获得积分10
49秒前
abc完成签到 ,获得积分10
51秒前
Quiller.Wang发布了新的文献求助30
52秒前
QQ关注了科研通微信公众号
53秒前
WangXiaoze发布了新的文献求助10
53秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737290
求助须知:如何正确求助?哪些是违规求助? 3281158
关于积分的说明 10023202
捐赠科研通 2997821
什么是DOI,文献DOI怎么找? 1644872
邀请新用户注册赠送积分活动 782227
科研通“疑难数据库(出版商)”最低求助积分说明 749731