亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning-based high-quality image recovery from 1D signals obtained by single-pixel imaging

计算机科学 人工智能 采样(信号处理) 像素 计算机视觉 图像质量 迭代重建 生成对抗网络 压缩传感 过采样 鬼影成像 质量(理念) 探测器 图像(数学) 模式识别(心理学) 电信 带宽(计算) 物理 滤波器(信号处理) 量子力学
作者
Xiaogang Wang,Angang Zhu,Shanshan Lin,Bijun Xu
出处
期刊:Optics Communications [Elsevier BV]
卷期号:521: 128571-128571 被引量:12
标识
DOI:10.1016/j.optcom.2022.128571
摘要

As an innovative and computational imaging technique, it is critical for single-pixel imaging (SPI) to achieve a high reconstruction quality. However, the reconstruction image quality in conventional SPI is heavily dependent on the sampling rate. In this work, we present a learning-based SPI approach for high-quality image reconstruction under a low sampling rate. A bucket detector included in our optical setup is used to collect the one-dimensional (1D) signals reflected from a two-dimensional (2D) object and an end-to-end generative adversarial network (EGAN) which is pre-trained with simulated data is utilized to implement the reconstruction of the object. The results show that the proposed approach is able to produce high quality approximations of 2D images from optically collected 1D bucket signals at a very low sampling ratio. It can also be shown a better performance can be achieved by compared with previous studies on the same dataset, such as conventional SPI, compressive-sensing ghost imaging (CSGI) and U-net-based SPI approaches. • A learning-based single-pixel imaging (SPI) for high-quality image reconstruction under a very low sampling rate is proposed. • The implementation of efficient image reconstruction is performed by an end-to-end generative adversarial network. • The performance of the proposed SPI is demonstrated under different sampling rate conditions using both simulated and optical experiments. • Compared with other techniques, the pre-trained EGAN can output higher quality approximations of object images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
29秒前
华仔应助超级飞侠采纳,获得10
46秒前
50秒前
ANTianxu完成签到 ,获得积分10
56秒前
1分钟前
1分钟前
99hz关注了科研通微信公众号
1分钟前
1分钟前
99hz发布了新的文献求助10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
LArry完成签到,获得积分10
1分钟前
2分钟前
微笑笑萍完成签到,获得积分10
2分钟前
2分钟前
2分钟前
jimmy_bytheway完成签到,获得积分0
3分钟前
健忘的溪灵完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
852应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
Noob_saibot完成签到,获得积分10
4分钟前
牛八先生完成签到,获得积分10
4分钟前
布干维尔岛耐摔王完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
TYGao发布了新的文献求助10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568741
求助须知:如何正确求助?哪些是违规求助? 3991231
关于积分的说明 12355514
捐赠科研通 3663277
什么是DOI,文献DOI怎么找? 2018813
邀请新用户注册赠送积分活动 1053218
科研通“疑难数据库(出版商)”最低求助积分说明 940791