Learning-based high-quality image recovery from 1D signals obtained by single-pixel imaging

计算机科学 人工智能 采样(信号处理) 像素 计算机视觉 图像质量 迭代重建 生成对抗网络 压缩传感 过采样 模式识别(心理学)
作者
Xiaogang Wang,Angang Zhu,Shanshan Lin,Bijun Xu
出处
期刊:Optics Communications [Elsevier]
卷期号:: 128571-128571
标识
DOI:10.1016/j.optcom.2022.128571
摘要

As an innovative and computational imaging technique, it is critical for single-pixel imaging (SPI) to achieve a high reconstruction quality. However, the reconstruction image quality in conventional SPI is heavily dependent on the sampling rate. In this work, we present a learning-based SPI approach for high-quality image reconstruction under a low sampling rate. A bucket detector included in our optical setup is used to collect the one-dimensional (1D) signals reflected from a two-dimensional (2D) object and an end-to-end generative adversarial network (EGAN) which is pre-trained with simulated data is utilized to implement the reconstruction of the object. The results show that the proposed approach is able to produce high quality approximations of 2D images from optically collected 1D bucket signals at a very low sampling ratio. It can also be shown a better performance can be achieved by compared with previous studies on the same dataset, such as conventional SPI, compressive-sensing ghost imaging (CSGI) and U-net-based SPI approaches. • A learning-based single-pixel imaging (SPI) for high-quality image reconstruction under a very low sampling rate is proposed. • The implementation of efficient image reconstruction is performed by an end-to-end generative adversarial network. • The performance of the proposed SPI is demonstrated under different sampling rate conditions using both simulated and optical experiments. • Compared with other techniques, the pre-trained EGAN can output higher quality approximations of object images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
烟花应助月亮夏的夏采纳,获得10
3秒前
3秒前
oceanao应助sedrakyan采纳,获得10
5秒前
6秒前
Zz发布了新的文献求助10
6秒前
苯环完成签到 ,获得积分10
6秒前
6秒前
6秒前
田様应助nonoNOSHEEP采纳,获得10
6秒前
Mossambicus完成签到,获得积分20
7秒前
袁妞妞发布了新的文献求助10
8秒前
紫藤发布了新的文献求助10
8秒前
8秒前
甜甜丑完成签到,获得积分10
9秒前
乐乐应助无辜的姒采纳,获得10
9秒前
9秒前
容荣发布了新的文献求助20
10秒前
1111发布了新的文献求助10
10秒前
雪山飞龙发布了新的文献求助10
11秒前
热情凌青完成签到,获得积分10
11秒前
沉默烨霖发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
马里奥发布了新的文献求助10
13秒前
聪明的难摧完成签到,获得积分10
13秒前
fiell发布了新的文献求助10
14秒前
14秒前
小蘑菇应助任我行采纳,获得10
15秒前
16秒前
nan关闭了nan文献求助
16秒前
17秒前
hhximgg发布了新的文献求助10
18秒前
whutzxy完成签到,获得积分10
18秒前
18秒前
丘比特应助东方欲晓采纳,获得10
18秒前
18秒前
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812642
关于积分的说明 7895839
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316030
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112