Learning-based high-quality image recovery from 1D signals obtained by single-pixel imaging

计算机科学 人工智能 采样(信号处理) 像素 计算机视觉 图像质量 迭代重建 生成对抗网络 压缩传感 过采样 鬼影成像 质量(理念) 探测器 图像(数学) 模式识别(心理学) 电信 带宽(计算) 物理 滤波器(信号处理) 量子力学
作者
Xiaogang Wang,Angang Zhu,Shanshan Lin,Bijun Xu
出处
期刊:Optics Communications [Elsevier BV]
卷期号:521: 128571-128571 被引量:12
标识
DOI:10.1016/j.optcom.2022.128571
摘要

As an innovative and computational imaging technique, it is critical for single-pixel imaging (SPI) to achieve a high reconstruction quality. However, the reconstruction image quality in conventional SPI is heavily dependent on the sampling rate. In this work, we present a learning-based SPI approach for high-quality image reconstruction under a low sampling rate. A bucket detector included in our optical setup is used to collect the one-dimensional (1D) signals reflected from a two-dimensional (2D) object and an end-to-end generative adversarial network (EGAN) which is pre-trained with simulated data is utilized to implement the reconstruction of the object. The results show that the proposed approach is able to produce high quality approximations of 2D images from optically collected 1D bucket signals at a very low sampling ratio. It can also be shown a better performance can be achieved by compared with previous studies on the same dataset, such as conventional SPI, compressive-sensing ghost imaging (CSGI) and U-net-based SPI approaches. • A learning-based single-pixel imaging (SPI) for high-quality image reconstruction under a very low sampling rate is proposed. • The implementation of efficient image reconstruction is performed by an end-to-end generative adversarial network. • The performance of the proposed SPI is demonstrated under different sampling rate conditions using both simulated and optical experiments. • Compared with other techniques, the pre-trained EGAN can output higher quality approximations of object images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cc发布了新的文献求助10
1秒前
1秒前
1秒前
3秒前
4秒前
5秒前
紫苏桃子关注了科研通微信公众号
6秒前
多多完成签到,获得积分10
6秒前
Hayat应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
河豚素应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
guyue发布了新的文献求助10
8秒前
左安完成签到,获得积分10
8秒前
hywel发布了新的文献求助10
9秒前
神楽完成签到,获得积分10
14秒前
15秒前
沉默清关注了科研通微信公众号
17秒前
香豆素完成签到 ,获得积分10
19秒前
哇哦哦完成签到 ,获得积分10
19秒前
waws发布了新的文献求助10
20秒前
漫若浮光完成签到,获得积分10
21秒前
KK完成签到,获得积分10
21秒前
隐形的冰兰给隐形的冰兰的求助进行了留言
22秒前
浮游应助飘逸灵煌采纳,获得10
23秒前
26秒前
stt完成签到 ,获得积分10
27秒前
大个应助山君采纳,获得10
28秒前
科研通AI6应助Jason采纳,获得10
29秒前
27完成签到 ,获得积分10
31秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225665
求助须知:如何正确求助?哪些是违规求助? 4397339
关于积分的说明 13686262
捐赠科研通 4261822
什么是DOI,文献DOI怎么找? 2338760
邀请新用户注册赠送积分活动 1336137
关于科研通互助平台的介绍 1292067