Learning-based high-quality image recovery from 1D signals obtained by single-pixel imaging

计算机科学 人工智能 采样(信号处理) 像素 计算机视觉 图像质量 迭代重建 生成对抗网络 压缩传感 过采样 模式识别(心理学)
作者
Xiaogang Wang,Angang Zhu,Shanshan Lin,Bijun Xu
出处
期刊:Optics Communications [Elsevier BV]
卷期号:: 128571-128571
标识
DOI:10.1016/j.optcom.2022.128571
摘要

As an innovative and computational imaging technique, it is critical for single-pixel imaging (SPI) to achieve a high reconstruction quality. However, the reconstruction image quality in conventional SPI is heavily dependent on the sampling rate. In this work, we present a learning-based SPI approach for high-quality image reconstruction under a low sampling rate. A bucket detector included in our optical setup is used to collect the one-dimensional (1D) signals reflected from a two-dimensional (2D) object and an end-to-end generative adversarial network (EGAN) which is pre-trained with simulated data is utilized to implement the reconstruction of the object. The results show that the proposed approach is able to produce high quality approximations of 2D images from optically collected 1D bucket signals at a very low sampling ratio. It can also be shown a better performance can be achieved by compared with previous studies on the same dataset, such as conventional SPI, compressive-sensing ghost imaging (CSGI) and U-net-based SPI approaches. • A learning-based single-pixel imaging (SPI) for high-quality image reconstruction under a very low sampling rate is proposed. • The implementation of efficient image reconstruction is performed by an end-to-end generative adversarial network. • The performance of the proposed SPI is demonstrated under different sampling rate conditions using both simulated and optical experiments. • Compared with other techniques, the pre-trained EGAN can output higher quality approximations of object images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研无止境w发布了新的文献求助10
1秒前
3秒前
奶油泡fu完成签到 ,获得积分10
3秒前
dong东包完成签到,获得积分20
4秒前
4秒前
ED应助cccccc采纳,获得10
4秒前
shangziru发布了新的文献求助10
5秒前
漠之梦完成签到,获得积分20
6秒前
sc完成签到,获得积分10
6秒前
谦让的含海完成签到,获得积分10
6秒前
好运連連完成签到,获得积分10
7秒前
9秒前
liu完成签到,获得积分10
9秒前
飞翔的霸天哥应助Yuanchaoyi采纳,获得30
10秒前
香蕉觅云应助WJH采纳,获得10
11秒前
汉堡包应助研友_LOoomL采纳,获得10
11秒前
小二郎应助Felix采纳,获得10
11秒前
zaphkiel完成签到 ,获得积分10
12秒前
健壮的囧完成签到,获得积分10
13秒前
torch132完成签到,获得积分10
14秒前
桐桐应助阿景采纳,获得10
15秒前
15秒前
震动的平松完成签到 ,获得积分10
15秒前
Ting完成签到 ,获得积分10
16秒前
16秒前
Hello应助王冉冉采纳,获得30
17秒前
Ava应助Jarvi采纳,获得10
17秒前
18秒前
19秒前
20秒前
一枚研究僧完成签到,获得积分0
20秒前
20秒前
赘婿应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
1351567822应助科研通管家采纳,获得30
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
合适的毛豆完成签到,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048