Learning-based high-quality image recovery from 1D signals obtained by single-pixel imaging

计算机科学 人工智能 采样(信号处理) 像素 计算机视觉 图像质量 迭代重建 生成对抗网络 压缩传感 过采样 鬼影成像 质量(理念) 探测器 图像(数学) 模式识别(心理学) 电信 带宽(计算) 物理 滤波器(信号处理) 量子力学
作者
Xiaogang Wang,Angang Zhu,Shanshan Lin,Bijun Xu
出处
期刊:Optics Communications [Elsevier]
卷期号:521: 128571-128571 被引量:12
标识
DOI:10.1016/j.optcom.2022.128571
摘要

As an innovative and computational imaging technique, it is critical for single-pixel imaging (SPI) to achieve a high reconstruction quality. However, the reconstruction image quality in conventional SPI is heavily dependent on the sampling rate. In this work, we present a learning-based SPI approach for high-quality image reconstruction under a low sampling rate. A bucket detector included in our optical setup is used to collect the one-dimensional (1D) signals reflected from a two-dimensional (2D) object and an end-to-end generative adversarial network (EGAN) which is pre-trained with simulated data is utilized to implement the reconstruction of the object. The results show that the proposed approach is able to produce high quality approximations of 2D images from optically collected 1D bucket signals at a very low sampling ratio. It can also be shown a better performance can be achieved by compared with previous studies on the same dataset, such as conventional SPI, compressive-sensing ghost imaging (CSGI) and U-net-based SPI approaches. • A learning-based single-pixel imaging (SPI) for high-quality image reconstruction under a very low sampling rate is proposed. • The implementation of efficient image reconstruction is performed by an end-to-end generative adversarial network. • The performance of the proposed SPI is demonstrated under different sampling rate conditions using both simulated and optical experiments. • Compared with other techniques, the pre-trained EGAN can output higher quality approximations of object images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1816013153发布了新的文献求助10
刚刚
科目三应助ZhouQixing采纳,获得10
1秒前
3秒前
英俊的铭应助疯狂加载ing采纳,获得10
4秒前
4秒前
奥沙利楠完成签到,获得积分10
6秒前
6秒前
hanli完成签到,获得积分20
6秒前
钰宁完成签到,获得积分10
6秒前
打打应助Steven采纳,获得10
9秒前
10秒前
66666发布了新的文献求助10
11秒前
斯文败类应助云水雾心采纳,获得10
12秒前
hanli发布了新的文献求助10
14秒前
华仔应助虚心碧采纳,获得10
14秒前
脑洞疼应助大豹子采纳,获得10
15秒前
16秒前
领导范儿应助细腻的深白采纳,获得10
17秒前
NEW发布了新的文献求助10
20秒前
22秒前
23秒前
sssshhh发布了新的文献求助10
25秒前
26秒前
ZhouQixing发布了新的文献求助10
27秒前
虚心碧发布了新的文献求助10
30秒前
不饱和环二酮完成签到,获得积分10
30秒前
34秒前
大豹子发布了新的文献求助10
37秒前
虚心碧完成签到,获得积分10
37秒前
GTRK完成签到 ,获得积分10
38秒前
40秒前
把秘密当成玩笑完成签到,获得积分10
40秒前
小二郎应助Tsuki采纳,获得10
41秒前
刘倩完成签到 ,获得积分10
45秒前
47秒前
47秒前
英姑应助NEW采纳,获得10
50秒前
yannnis完成签到,获得积分10
52秒前
跳跃的凌文完成签到 ,获得积分10
53秒前
myg8627发布了新的文献求助10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557972
求助须知:如何正确求助?哪些是违规求助? 4642937
关于积分的说明 14669867
捐赠科研通 4584431
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1489002
关于科研通互助平台的介绍 1459619