Improved Bidirectional GAN-Based Approach for Network Intrusion Detection Using One-Class Classifier

鉴别器 计算机科学 异常检测 入侵检测系统 分类器(UML) 模式识别(心理学) 编码器 人工智能 发电机(电路理论) 同步 人工神经网络 数据挖掘 机器学习 探测器 功率(物理) 计算机网络 电信 频道(广播) 物理 量子力学 操作系统
作者
Wen Xu,Julian Jang-Jaccard,Tong Liu,Fariza Sabrina,Jin Kwak
出处
期刊:Computers [Multidisciplinary Digital Publishing Institute]
卷期号:11 (6): 85-85 被引量:10
标识
DOI:10.3390/computers11060085
摘要

Existing generative adversarial networks (GANs), primarily used for creating fake image samples from natural images, demand a strong dependence (i.e., the training strategy of the generators and the discriminators require to be in sync) for the generators to produce as realistic fake samples that can “fool” the discriminators. We argue that this strong dependency required for GAN training on images does not necessarily work for GAN models for network intrusion detection tasks. This is because the network intrusion inputs have a simpler feature structure such as relatively low-dimension, discrete feature values, and smaller input size compared to the existing GAN-based anomaly detection tasks proposed on images. To address this issue, we propose a new Bidirectional GAN (Bi-GAN) model that is better equipped for network intrusion detection with reduced overheads involved in excessive training. In our proposed method, the training iteration of the generator (and accordingly the encoder) is increased separate from the training of the discriminator until it satisfies the condition associated with the cross-entropy loss. Our empirical results show that this proposed training strategy greatly improves the performance of both the generator and the discriminator even in the presence of imbalanced classes. In addition, our model offers a new construct of a one-class classifier using the trained encoder–discriminator. The one-class classifier detects anomalous network traffic based on binary classification results instead of calculating expensive and complex anomaly scores (or thresholds). Our experimental result illustrates that our proposed method is highly effective to be used in network intrusion detection tasks and outperforms other similar generative methods on two datasets: NSL-KDD and CIC-DDoS2019 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助wangayting采纳,获得10
刚刚
南敏株发布了新的文献求助10
刚刚
yznfly应助shilye采纳,获得30
1秒前
Lucas应助DeepLearning采纳,获得10
2秒前
2秒前
Yexidong发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
SYLH应助EthanChan采纳,获得10
6秒前
6秒前
niuma发布了新的文献求助10
7秒前
8秒前
Leo关闭了Leo文献求助
8秒前
RC_Wang发布了新的文献求助10
9秒前
邢文瑞发布了新的文献求助10
11秒前
威灵仙发布了新的文献求助10
11秒前
英姑应助zhaoyali采纳,获得10
12秒前
种花家的狗狗完成签到,获得积分10
13秒前
蒲公英发布了新的文献求助10
13秒前
柯一一应助韩凡采纳,获得10
14秒前
15秒前
王檬发布了新的文献求助10
16秒前
17秒前
17秒前
orixero应助机智的醉山采纳,获得10
17秒前
18秒前
niuma完成签到,获得积分10
19秒前
博修发布了新的文献求助10
21秒前
勤劳怜寒发布了新的文献求助10
21秒前
SGQT发布了新的文献求助10
22秒前
22秒前
JamesPei应助Reid采纳,获得10
22秒前
23秒前
醉翁完成签到,获得积分10
23秒前
林夕发布了新的文献求助10
23秒前
我是老大应助蒲公英采纳,获得10
23秒前
寂寞的寄松应助曹慧采纳,获得10
25秒前
隐形曼青应助孝顺的尔丝采纳,获得10
25秒前
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508787
关于积分的说明 11143177
捐赠科研通 3241660
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873020
科研通“疑难数据库(出版商)”最低求助积分说明 803577