Improved Bidirectional GAN-Based Approach for Network Intrusion Detection Using One-Class Classifier

鉴别器 计算机科学 异常检测 入侵检测系统 分类器(UML) 模式识别(心理学) 编码器 人工智能 发电机(电路理论) 同步 人工神经网络 数据挖掘 机器学习 探测器 功率(物理) 计算机网络 电信 频道(广播) 物理 量子力学 操作系统
作者
Wen Xu,Julian Jang-Jaccard,Tong Liu,Fariza Sabrina,Jin Kwak
出处
期刊:Computers [Multidisciplinary Digital Publishing Institute]
卷期号:11 (6): 85-85 被引量:10
标识
DOI:10.3390/computers11060085
摘要

Existing generative adversarial networks (GANs), primarily used for creating fake image samples from natural images, demand a strong dependence (i.e., the training strategy of the generators and the discriminators require to be in sync) for the generators to produce as realistic fake samples that can “fool” the discriminators. We argue that this strong dependency required for GAN training on images does not necessarily work for GAN models for network intrusion detection tasks. This is because the network intrusion inputs have a simpler feature structure such as relatively low-dimension, discrete feature values, and smaller input size compared to the existing GAN-based anomaly detection tasks proposed on images. To address this issue, we propose a new Bidirectional GAN (Bi-GAN) model that is better equipped for network intrusion detection with reduced overheads involved in excessive training. In our proposed method, the training iteration of the generator (and accordingly the encoder) is increased separate from the training of the discriminator until it satisfies the condition associated with the cross-entropy loss. Our empirical results show that this proposed training strategy greatly improves the performance of both the generator and the discriminator even in the presence of imbalanced classes. In addition, our model offers a new construct of a one-class classifier using the trained encoder–discriminator. The one-class classifier detects anomalous network traffic based on binary classification results instead of calculating expensive and complex anomaly scores (or thresholds). Our experimental result illustrates that our proposed method is highly effective to be used in network intrusion detection tasks and outperforms other similar generative methods on two datasets: NSL-KDD and CIC-DDoS2019 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温婉的荷花完成签到,获得积分10
刚刚
HXDong123完成签到,获得积分10
刚刚
haha完成签到,获得积分10
刚刚
牛马完成签到,获得积分10
刚刚
爬山虎发布了新的文献求助10
1秒前
1秒前
杨佳莉完成签到,获得积分10
2秒前
朱123完成签到 ,获得积分10
2秒前
敏静完成签到,获得积分10
2秒前
大模型应助陈怀祚采纳,获得10
2秒前
Maston应助xiaoyuyuyu采纳,获得10
2秒前
17完成签到,获得积分20
2秒前
3秒前
3秒前
赘婿应助司连喜采纳,获得10
4秒前
我是老大应助yizh采纳,获得30
4秒前
zhan应助房东的猫采纳,获得10
5秒前
七颗星星完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
无心发布了新的文献求助10
6秒前
6秒前
汉堡包应助淡然寒蕾采纳,获得10
7秒前
尊敬菠萝发布了新的文献求助10
7秒前
星辰大海应助科研通管家采纳,获得10
8秒前
8秒前
顾矜应助科研通管家采纳,获得30
8秒前
大力发布了新的文献求助10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
李健的小迷弟应助fyc采纳,获得10
9秒前
B站萧亚轩发布了新的文献求助10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
蛔虫扭啊扭完成签到,获得积分10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193549
求助须知:如何正确求助?哪些是违规求助? 4376036
关于积分的说明 13627965
捐赠科研通 4230855
什么是DOI,文献DOI怎么找? 2320601
邀请新用户注册赠送积分活动 1318989
关于科研通互助平台的介绍 1269260