Improved Bidirectional GAN-Based Approach for Network Intrusion Detection Using One-Class Classifier

鉴别器 计算机科学 异常检测 入侵检测系统 分类器(UML) 模式识别(心理学) 编码器 人工智能 发电机(电路理论) 同步 人工神经网络 数据挖掘 机器学习 探测器 功率(物理) 计算机网络 操作系统 物理 频道(广播) 电信 量子力学
作者
Wen Xu,Julian Jang-Jaccard,Tong Liu,Fariza Sabrina,Jin Kwak
出处
期刊:Computers [MDPI AG]
卷期号:11 (6): 85-85 被引量:10
标识
DOI:10.3390/computers11060085
摘要

Existing generative adversarial networks (GANs), primarily used for creating fake image samples from natural images, demand a strong dependence (i.e., the training strategy of the generators and the discriminators require to be in sync) for the generators to produce as realistic fake samples that can “fool” the discriminators. We argue that this strong dependency required for GAN training on images does not necessarily work for GAN models for network intrusion detection tasks. This is because the network intrusion inputs have a simpler feature structure such as relatively low-dimension, discrete feature values, and smaller input size compared to the existing GAN-based anomaly detection tasks proposed on images. To address this issue, we propose a new Bidirectional GAN (Bi-GAN) model that is better equipped for network intrusion detection with reduced overheads involved in excessive training. In our proposed method, the training iteration of the generator (and accordingly the encoder) is increased separate from the training of the discriminator until it satisfies the condition associated with the cross-entropy loss. Our empirical results show that this proposed training strategy greatly improves the performance of both the generator and the discriminator even in the presence of imbalanced classes. In addition, our model offers a new construct of a one-class classifier using the trained encoder–discriminator. The one-class classifier detects anomalous network traffic based on binary classification results instead of calculating expensive and complex anomaly scores (or thresholds). Our experimental result illustrates that our proposed method is highly effective to be used in network intrusion detection tasks and outperforms other similar generative methods on two datasets: NSL-KDD and CIC-DDoS2019 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青衍应助dusjsj采纳,获得10
1秒前
Ariok发布了新的文献求助10
1秒前
轻松完成签到,获得积分10
2秒前
李健的小迷弟应助xelloss采纳,获得10
3秒前
3秒前
sun完成签到,获得积分10
3秒前
阳光萝完成签到,获得积分10
3秒前
华仔应助zwbo采纳,获得10
4秒前
Su糖铺子完成签到,获得积分10
4秒前
YJ完成签到,获得积分10
5秒前
5秒前
kiriya发布了新的文献求助10
5秒前
ll发布了新的文献求助10
6秒前
dusjsj完成签到,获得积分20
7秒前
Apple发布了新的文献求助20
8秒前
8秒前
8秒前
罗怀蕊完成签到,获得积分10
9秒前
9秒前
小鹏哥完成签到,获得积分10
9秒前
卡萨卡萨完成签到,获得积分10
11秒前
11秒前
spk关闭了spk文献求助
11秒前
12秒前
斯文败类应助诗酒采纳,获得10
13秒前
聪明月饼发布了新的文献求助10
14秒前
聪慧百合发布了新的文献求助10
14秒前
14秒前
库凯伊完成签到,获得积分10
15秒前
15秒前
晓军完成签到,获得积分20
15秒前
16秒前
北秋发布了新的文献求助10
17秒前
晓军发布了新的文献求助10
18秒前
19秒前
19秒前
ticsadis完成签到,获得积分10
19秒前
齐齐巴宾发布了新的文献求助10
19秒前
pantene完成签到 ,获得积分10
21秒前
zhang狗子发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152014
求助须知:如何正确求助?哪些是违规求助? 2803297
关于积分的说明 7853218
捐赠科研通 2460777
什么是DOI,文献DOI怎么找? 1310024
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601765