Frame-Guided Assembly of Amphiphiles

两亲性 纳米材料 膜曲率 纳米技术 成核 胶束 脂质双层 小泡 化学 生物物理学 双层 材料科学 水溶液 聚合物 有机化学 共聚物 生物化学 生物
作者
Yuanchen Dong,Yang Yang,Chenxiang Lin,Dongsheng Liu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (14): 1938-1948 被引量:25
标识
DOI:10.1021/acs.accounts.2c00234
摘要

Amphiphiles tend to self-assemble into various structures and morphologies in aqueous environments (e.g., micelles, tubes, fibers, vesicles, and lamellae). These assemblies and their properties have made significant impact in traditional chemical industries, e.g., increasing solubility, decreasing surface tension, facilitating foaming, etc. It is well-known that the molecular structure and its environment play a critical role in the assembly process, and many theories, including critical packing factor, thermodynamic models, etc., have been proposed to explain and predict the assembly morphology. It has been recognized that the morphology of the amphiphilic assembly plays important roles in determining the functions, such as curvature-dependent biophysical (e.g., liposome fusion and fission) and biochemical (e.g., lipid metabolism and membrane protein trafficking) processes, size-related EPR (enhanced permeability and retention) effects, etc. Meanwhile, various nanomaterials have promised great potential in directing the arrangement of molecules, thus generating unique functions. Therefore, control over the amphiphilic morphology is of great interest to scientists, especially in nanoscale with the assistance of functional nanomaterials. However, how to precisely manipulate the sizes and shapes of the assemblies is challenged by the entropic nature of the hydrophobic interaction. Inspired by the "cytoskeleton-membrane protein-lipid bilayer" principle of the cell membrane, a strategy termed "frame-guided assembly (FGA)" has been proposed and developed to direct the arrangement of amphiphiles. The FGA strategy welcomes various nanomaterials with precisely controlled properties to serve as scaffolds. By introducing scattered hydrophobic molecules, which are defined as either leading hydrophobic groups (LHGs) or nucleation seeds onto a selected scaffold, a discontinuous hydrophobic trace along the scaffold can be outlined, which will further guide the amphiphiles in the system to grow and form customized two- or three-dimensional (2D/3D) membrane geometries.Topologically, the supporting frame can be classified as three types including inner-frame, outer-frame, and planar-frame. Each type of FGA assembly possesses particular advantages: (1) The inner-frame, similar to endoskeletons of many cellular structures, steadily supports the membrane from the inside and exposes the full surface area outside. (2) The outer-frame, on the other hand, molds and constrains the membrane-wrapped vesicles to regulate their size and shape. It also allows postengineering of the frame to precisely decorate and dynamically manipulate the membrane. (3) The planar-frame mediates the growth of the 2D membrane that profits from the scanning-probe microscopic characterization and benefits the investigation of membrane proteins.In this Account, we introduce the recent progress of frame-guided assembly strategy in the preparation of customized amphiphile assemblies, evaluate their achievements and limitations, and discuss prospective developments and applications. The basic principle of FGA is discussed, and the morphology controllability is summarized in the inner-, outer-, and planar-frame categories. As a versatile strategy, FGA is able to guide different types of amphiphiles by designing specific LHGs for given molecular structures. The mechanism of FGA is then discussed systematically, including the driving force of the assembly, density and distribution of the LHGs, amphiphile concentration, and the kinetic process. Furthermore, the applications of FGA have been developed for liposome engineering, membrane protein incorporation, and drug delivery, which suggest the huge potential of FGA in fabricating novel and functional complexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
珊明治完成签到,获得积分10
1秒前
罗杨完成签到,获得积分20
2秒前
踏实凡儿完成签到 ,获得积分10
2秒前
LFC发布了新的文献求助10
2秒前
2秒前
wanci应助Ali采纳,获得200
3秒前
ky完成签到 ,获得积分10
5秒前
无花果应助guoguo采纳,获得10
6秒前
肉肉的小屋完成签到,获得积分10
6秒前
6秒前
调皮的蓝天完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
乾乾完成签到,获得积分10
6秒前
7秒前
松松包完成签到,获得积分10
7秒前
7秒前
Ssd4完成签到,获得积分10
8秒前
zz完成签到,获得积分10
10秒前
时尚白晴完成签到 ,获得积分10
10秒前
AL发布了新的文献求助10
11秒前
11秒前
ZML314完成签到,获得积分10
12秒前
乔木发布了新的文献求助10
12秒前
haha完成签到,获得积分10
13秒前
14秒前
现代的花生完成签到,获得积分10
14秒前
科研通AI6.1应助hy123123采纳,获得30
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
紧张的眼睛完成签到 ,获得积分10
16秒前
任驰骋完成签到,获得积分10
17秒前
有故无陨完成签到,获得积分10
17秒前
17秒前
AL完成签到,获得积分10
18秒前
清爽的人龙完成签到 ,获得积分10
18秒前
18秒前
19秒前
薏晓完成签到 ,获得积分10
19秒前
20秒前
馨达子发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749652
求助须知:如何正确求助?哪些是违规求助? 5460000
关于积分的说明 15364278
捐赠科研通 4889098
什么是DOI,文献DOI怎么找? 2628929
邀请新用户注册赠送积分活动 1577176
关于科研通互助平台的介绍 1533851