Frame-Guided Assembly of Amphiphiles

两亲性 纳米材料 膜曲率 纳米技术 成核 胶束 脂质双层 小泡 化学 生物物理学 双层 材料科学 水溶液 聚合物 有机化学 共聚物 生物化学 生物
作者
Yuanchen Dong,Yang Yang,Chenxiang Lin,Dongsheng Liu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (14): 1938-1948 被引量:25
标识
DOI:10.1021/acs.accounts.2c00234
摘要

Amphiphiles tend to self-assemble into various structures and morphologies in aqueous environments (e.g., micelles, tubes, fibers, vesicles, and lamellae). These assemblies and their properties have made significant impact in traditional chemical industries, e.g., increasing solubility, decreasing surface tension, facilitating foaming, etc. It is well-known that the molecular structure and its environment play a critical role in the assembly process, and many theories, including critical packing factor, thermodynamic models, etc., have been proposed to explain and predict the assembly morphology. It has been recognized that the morphology of the amphiphilic assembly plays important roles in determining the functions, such as curvature-dependent biophysical (e.g., liposome fusion and fission) and biochemical (e.g., lipid metabolism and membrane protein trafficking) processes, size-related EPR (enhanced permeability and retention) effects, etc. Meanwhile, various nanomaterials have promised great potential in directing the arrangement of molecules, thus generating unique functions. Therefore, control over the amphiphilic morphology is of great interest to scientists, especially in nanoscale with the assistance of functional nanomaterials. However, how to precisely manipulate the sizes and shapes of the assemblies is challenged by the entropic nature of the hydrophobic interaction. Inspired by the "cytoskeleton-membrane protein-lipid bilayer" principle of the cell membrane, a strategy termed "frame-guided assembly (FGA)" has been proposed and developed to direct the arrangement of amphiphiles. The FGA strategy welcomes various nanomaterials with precisely controlled properties to serve as scaffolds. By introducing scattered hydrophobic molecules, which are defined as either leading hydrophobic groups (LHGs) or nucleation seeds onto a selected scaffold, a discontinuous hydrophobic trace along the scaffold can be outlined, which will further guide the amphiphiles in the system to grow and form customized two- or three-dimensional (2D/3D) membrane geometries.Topologically, the supporting frame can be classified as three types including inner-frame, outer-frame, and planar-frame. Each type of FGA assembly possesses particular advantages: (1) The inner-frame, similar to endoskeletons of many cellular structures, steadily supports the membrane from the inside and exposes the full surface area outside. (2) The outer-frame, on the other hand, molds and constrains the membrane-wrapped vesicles to regulate their size and shape. It also allows postengineering of the frame to precisely decorate and dynamically manipulate the membrane. (3) The planar-frame mediates the growth of the 2D membrane that profits from the scanning-probe microscopic characterization and benefits the investigation of membrane proteins.In this Account, we introduce the recent progress of frame-guided assembly strategy in the preparation of customized amphiphile assemblies, evaluate their achievements and limitations, and discuss prospective developments and applications. The basic principle of FGA is discussed, and the morphology controllability is summarized in the inner-, outer-, and planar-frame categories. As a versatile strategy, FGA is able to guide different types of amphiphiles by designing specific LHGs for given molecular structures. The mechanism of FGA is then discussed systematically, including the driving force of the assembly, density and distribution of the LHGs, amphiphile concentration, and the kinetic process. Furthermore, the applications of FGA have been developed for liposome engineering, membrane protein incorporation, and drug delivery, which suggest the huge potential of FGA in fabricating novel and functional complexes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
紧张的世德完成签到,获得积分10
刚刚
研友_ZrlaXL发布了新的文献求助10
刚刚
无花果应助化学兔八哥采纳,获得10
1秒前
余柳发布了新的文献求助10
1秒前
1秒前
黑森林完成签到,获得积分10
1秒前
CodeCraft应助今晚打老虎采纳,获得30
1秒前
shine完成签到,获得积分10
2秒前
犹豫的初丹完成签到,获得积分10
2秒前
2秒前
2秒前
我是老大应助zhihui采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
momosijia发布了新的文献求助10
5秒前
5秒前
自信晟睿发布了新的文献求助10
5秒前
平淡雪枫完成签到 ,获得积分10
5秒前
LS31发布了新的文献求助20
6秒前
Tingyu完成签到,获得积分10
6秒前
小欣发布了新的文献求助10
6秒前
LewisAcid举报量子星尘求助涉嫌违规
7秒前
7秒前
HLL发布了新的文献求助10
7秒前
Ethanyoyo0917完成签到,获得积分10
8秒前
8秒前
大气怜烟发布了新的文献求助10
8秒前
无极微光应助唯昭采纳,获得20
8秒前
8秒前
kong溪1002发布了新的文献求助10
8秒前
研友_ZrlaXL完成签到,获得积分10
9秒前
在水一方应助修狗儿采纳,获得10
9秒前
华仔应助双儿采纳,获得10
9秒前
李运发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066