Frame-Guided Assembly of Amphiphiles

两亲性 纳米材料 膜曲率 纳米技术 成核 胶束 脂质双层 小泡 化学 生物物理学 双层 材料科学 水溶液 聚合物 有机化学 共聚物 生物化学 生物
作者
Yuanchen Dong,Yang Yang,Chenxiang Lin,Dongsheng Liu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (14): 1938-1948 被引量:18
标识
DOI:10.1021/acs.accounts.2c00234
摘要

ConspectusAmphiphiles tend to self-assemble into various structures and morphologies in aqueous environments (e.g., micelles, tubes, fibers, vesicles, and lamellae). These assemblies and their properties have made significant impact in traditional chemical industries, e.g., increasing solubility, decreasing surface tension, facilitating foaming, etc. It is well-known that the molecular structure and its environment play a critical role in the assembly process, and many theories, including critical packing factor, thermodynamic models, etc., have been proposed to explain and predict the assembly morphology. It has been recognized that the morphology of the amphiphilic assembly plays important roles in determining the functions, such as curvature-dependent biophysical (e.g., liposome fusion and fission) and biochemical (e.g., lipid metabolism and membrane protein trafficking) processes, size-related EPR (enhanced permeability and retention) effects, etc. Meanwhile, various nanomaterials have promised great potential in directing the arrangement of molecules, thus generating unique functions. Therefore, control over the amphiphilic morphology is of great interest to scientists, especially in nanoscale with the assistance of functional nanomaterials. However, how to precisely manipulate the sizes and shapes of the assemblies is challenged by the entropic nature of the hydrophobic interaction. Inspired by the "cytoskeleton–membrane protein–lipid bilayer" principle of the cell membrane, a strategy termed "frame-guided assembly (FGA)" has been proposed and developed to direct the arrangement of amphiphiles. The FGA strategy welcomes various nanomaterials with precisely controlled properties to serve as scaffolds. By introducing scattered hydrophobic molecules, which are defined as either leading hydrophobic groups (LHGs) or nucleation seeds onto a selected scaffold, a discontinuous hydrophobic trace along the scaffold can be outlined, which will further guide the amphiphiles in the system to grow and form customized two- or three-dimensional (2D/3D) membrane geometries.Topologically, the supporting frame can be classified as three types including inner-frame, outer-frame, and planar-frame. Each type of FGA assembly possesses particular advantages: (1) The inner-frame, similar to endoskeletons of many cellular structures, steadily supports the membrane from the inside and exposes the full surface area outside. (2) The outer-frame, on the other hand, molds and constrains the membrane-wrapped vesicles to regulate their size and shape. It also allows postengineering of the frame to precisely decorate and dynamically manipulate the membrane. (3) The planar-frame mediates the growth of the 2D membrane that profits from the scanning-probe microscopic characterization and benefits the investigation of membrane proteins.In this Account, we introduce the recent progress of frame-guided assembly strategy in the preparation of customized amphiphile assemblies, evaluate their achievements and limitations, and discuss prospective developments and applications. The basic principle of FGA is discussed, and the morphology controllability is summarized in the inner-, outer-, and planar-frame categories. As a versatile strategy, FGA is able to guide different types of amphiphiles by designing specific LHGs for given molecular structures. The mechanism of FGA is then discussed systematically, including the driving force of the assembly, density and distribution of the LHGs, amphiphile concentration, and the kinetic process. Furthermore, the applications of FGA have been developed for liposome engineering, membrane protein incorporation, and drug delivery, which suggest the huge potential of FGA in fabricating novel and functional complexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥鹏完成签到,获得积分10
刚刚
刚刚
外向尔竹发布了新的文献求助10
1秒前
汉堡包应助西海岸的风采纳,获得10
1秒前
榴芒兔应助lixm采纳,获得10
1秒前
xxxxxj完成签到,获得积分10
1秒前
刻苦素完成签到,获得积分10
2秒前
研友_VZG7GZ应助APS采纳,获得10
3秒前
3秒前
3秒前
王宇航完成签到,获得积分10
3秒前
4秒前
小绿茶完成签到,获得积分10
4秒前
4秒前
4秒前
斯文败类应助an采纳,获得10
4秒前
6秒前
6秒前
等待的代容完成签到,获得积分10
7秒前
wadaxiwa完成签到,获得积分10
7秒前
move完成签到,获得积分10
7秒前
搜集达人应助风水云天采纳,获得10
7秒前
汉堡包应助zhaoh采纳,获得30
7秒前
7秒前
spark发布了新的文献求助10
7秒前
dujinjun发布了新的文献求助10
8秒前
8秒前
patience完成签到,获得积分10
9秒前
9秒前
zjy发布了新的文献求助10
9秒前
梁星星发布了新的文献求助10
9秒前
博修发布了新的文献求助10
10秒前
伶俐安萱发布了新的文献求助10
10秒前
yakultr完成签到,获得积分10
10秒前
xh93完成签到,获得积分10
10秒前
月与海完成签到,获得积分10
10秒前
11秒前
动听的蛟凤完成签到,获得积分10
11秒前
冷清之发布了新的文献求助10
11秒前
zhang完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009366
求助须知:如何正确求助?哪些是违规求助? 3549232
关于积分的说明 11301348
捐赠科研通 3283689
什么是DOI,文献DOI怎么找? 1810387
邀请新用户注册赠送积分活动 886217
科研通“疑难数据库(出版商)”最低求助积分说明 811301