Diffuse reflectance spectroscopy for estimating soil properties: A technology for the 21st century

可解释性 计算机科学 校准 多元统计 机器学习 漫反射红外傅里叶变换 成分数据 光谱学 土壤科学 环境科学 反射率 遥感 人工智能 数据挖掘 统计 数学 化学 地质学 光学 物理 催化作用 光催化 量子力学 生物化学
作者
R. A. Viscarra Rossel,T. Behrens,E. Ben‐Dor,S. Chabrillat,José Alexandre Melo Demattê,Y. Ge,Cécile Gomez,C. Guerrero,Y. Peng,L. Ramirez‐Lopez,Z. Shi,B. Stenberg,R. Webster,L. Winowiecki,Z. Shen
出处
期刊:European Journal of Soil Science [Wiley]
卷期号:73 (4) 被引量:4
标识
DOI:10.1111/ejss.13271
摘要

Spectroscopic measurements of soil samples are reliable because they are highly repeatable and reproducible. They characterise the samples' mineral–organic composition. Estimates of concentrations of soil constituents are inevitably less precise than estimates obtained conventionally by chemical analysis. But the cost of each spectroscopic estimate is at most one-tenth of the cost of a chemical determination. Spectroscopy is cost-effective when we need many data, despite the costs and errors of calibration. Soil spectroscopists understand the risks of over-fitting models to highly dimensional multivariate spectra and have command of the mathematical and statistical methods to avoid them. Machine learning has fast become an algorithmic alternative to statistical analysis for estimating concentrations of soil constituents from reflectance spectra. As with any modelling, we need judicious implementation of machine learning as it also carries the risk of over-fitting predictions to irrelevant elements of the spectra. To use the methods confidently, we need to validate the outcomes with appropriately sampled, independent data sets. Not all machine learning should be considered ‘black boxes’. Their interpretability depends on the algorithm, and some are highly interpretable and explainable. Some are difficult to interpret because of complex transformations or their huge and complicated network of parameters. But there is rapidly advancing research on explainable machine learning, and these methods are finding applications in soil science and spectroscopy. In many parts of the world, soil and environmental scientists recognise the merits of soil spectroscopy. They are building spectral libraries on which they can draw to localise the modelling and derive soil information for new projects within their domains. We hope our article gives readers a more balanced and optimistic perspective of soil spectroscopy and its future. Highlights Spectroscopy is reliable because it is a highly repeatable and reproducible analytical technique. Spectra are calibrated to estimate concentrations of soil properties with known error. Spectroscopy is cost-effective for estimating soil properties. Machine learning is becoming ever more powerful for extracting accurate information from spectra, and methods for interpreting the models exist. Large libraries of soil spectra provide information that can be used locally to aid estimates from new samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫小乐C完成签到,获得积分10
1秒前
2秒前
ty发布了新的文献求助10
2秒前
天天快乐应助liying采纳,获得10
2秒前
QQ发布了新的文献求助10
2秒前
SciGPT应助学习中勿扰采纳,获得10
2秒前
朱建军应助178181采纳,获得10
3秒前
FashionBoy应助满天星采纳,获得10
3秒前
3秒前
3秒前
Oqq发布了新的文献求助10
4秒前
醉熏的含羞草完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
7秒前
7秒前
想放春假发布了新的文献求助20
7秒前
9秒前
完美世界应助舒适的尔容采纳,获得10
9秒前
10秒前
10秒前
顾北发布了新的文献求助10
11秒前
丘比特应助zhou国兵采纳,获得10
11秒前
11秒前
会笑的光完成签到,获得积分10
11秒前
12秒前
12秒前
Wei发布了新的文献求助10
13秒前
1234发布了新的文献求助10
13秒前
思维隋发布了新的文献求助10
14秒前
眯眯眼的朋友完成签到,获得积分20
14秒前
徐逊发布了新的文献求助10
14秒前
14秒前
15秒前
回鱼发布了新的文献求助10
15秒前
ATOM发布了新的文献求助10
15秒前
柠檬香发布了新的文献求助10
16秒前
顾北完成签到,获得积分10
16秒前
Jasper应助123采纳,获得10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113