亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diffuse reflectance spectroscopy for estimating soil properties: A technology for the 21st century

可解释性 计算机科学 校准 多元统计 机器学习 漫反射红外傅里叶变换 成分数据 光谱学 土壤科学 环境科学 反射率 遥感 人工智能 数据挖掘 统计 数学 化学 地质学 光学 物理 催化作用 光催化 量子力学 生物化学
作者
R. A. Viscarra Rossel,T. Behrens,E. Ben‐Dor,S. Chabrillat,José Alexandre Melo Demattê,Y. Ge,Cécile Gomez,C. Guerrero,Y. Peng,L. Ramirez‐Lopez,Z. Shi,B. Stenberg,R. Webster,L. Winowiecki,Z. Shen
出处
期刊:European Journal of Soil Science [Wiley]
卷期号:73 (4) 被引量:4
标识
DOI:10.1111/ejss.13271
摘要

Spectroscopic measurements of soil samples are reliable because they are highly repeatable and reproducible. They characterise the samples' mineral–organic composition. Estimates of concentrations of soil constituents are inevitably less precise than estimates obtained conventionally by chemical analysis. But the cost of each spectroscopic estimate is at most one-tenth of the cost of a chemical determination. Spectroscopy is cost-effective when we need many data, despite the costs and errors of calibration. Soil spectroscopists understand the risks of over-fitting models to highly dimensional multivariate spectra and have command of the mathematical and statistical methods to avoid them. Machine learning has fast become an algorithmic alternative to statistical analysis for estimating concentrations of soil constituents from reflectance spectra. As with any modelling, we need judicious implementation of machine learning as it also carries the risk of over-fitting predictions to irrelevant elements of the spectra. To use the methods confidently, we need to validate the outcomes with appropriately sampled, independent data sets. Not all machine learning should be considered ‘black boxes’. Their interpretability depends on the algorithm, and some are highly interpretable and explainable. Some are difficult to interpret because of complex transformations or their huge and complicated network of parameters. But there is rapidly advancing research on explainable machine learning, and these methods are finding applications in soil science and spectroscopy. In many parts of the world, soil and environmental scientists recognise the merits of soil spectroscopy. They are building spectral libraries on which they can draw to localise the modelling and derive soil information for new projects within their domains. We hope our article gives readers a more balanced and optimistic perspective of soil spectroscopy and its future. Highlights Spectroscopy is reliable because it is a highly repeatable and reproducible analytical technique. Spectra are calibrated to estimate concentrations of soil properties with known error. Spectroscopy is cost-effective for estimating soil properties. Machine learning is becoming ever more powerful for extracting accurate information from spectra, and methods for interpreting the models exist. Large libraries of soil spectra provide information that can be used locally to aid estimates from new samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yusovegoistt发布了新的文献求助10
刚刚
nenoaowu完成签到,获得积分10
刚刚
sunshine发布了新的文献求助10
2秒前
陈如馨完成签到,获得积分10
2秒前
4秒前
容若发布了新的文献求助10
9秒前
judy007发布了新的文献求助150
11秒前
科目三应助活力的妙菡采纳,获得30
22秒前
万能图书馆应助容若采纳,获得10
29秒前
风华正茂完成签到,获得积分10
29秒前
Zed发布了新的文献求助10
32秒前
33秒前
38秒前
41秒前
苏震坤发布了新的文献求助10
47秒前
54秒前
55秒前
容若发布了新的文献求助10
59秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
情怀应助容若采纳,获得10
1分钟前
活力的妙菡完成签到,获得积分20
1分钟前
1分钟前
舒服的觅云完成签到,获得积分10
1分钟前
苏震坤发布了新的文献求助10
1分钟前
计划完成签到,获得积分10
2分钟前
2分钟前
葛力完成签到,获得积分20
2分钟前
葛力发布了新的文献求助10
2分钟前
2分钟前
gszy1975完成签到,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI6应助葛力采纳,获得10
3分钟前
老迟到的梦旋完成签到 ,获得积分10
3分钟前
一只小锦鲤完成签到 ,获得积分10
3分钟前
Licyan完成签到,获得积分10
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611385
求助须知:如何正确求助?哪些是违规求助? 4016925
关于积分的说明 12435844
捐赠科研通 3698805
什么是DOI,文献DOI怎么找? 2039712
邀请新用户注册赠送积分活动 1072522
科研通“疑难数据库(出版商)”最低求助积分说明 956191