Self-supervised learning for multi-center magnetic resonance imaging harmonization without traveling phantoms

计算机科学 人工智能 图像配准 计算机视觉 忠诚 直方图 模式识别(心理学) 图像(数学) 电信
作者
Xiao Chang,Xin Cai,Yibo Dan,Yang Song,Qing Lu,Guang Yang,Shengdong Nie
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (14): 145004-145004 被引量:4
标识
DOI:10.1088/1361-6560/ac7b66
摘要

Abstract Objective. With the progress of artificial intelligence (AI) in magnetic resonance imaging (MRI), large-scale multi-center MRI datasets have a great influence on diagnosis accuracy and model performance. However, multi-center images are highly variable due to the variety of scanners or scanning parameters in use, which has a negative effect on the generality of AI-based diagnosis models. To address this problem, we propose a self-supervised harmonization (SSH) method. Approach. Mapping the style of images between centers allows harmonization without traveling phantoms to be formalized as an unpaired image-to-image translation problem between two domains. The mapping is a two-stage transform, consisting of a modified cycle generative adversarial network (cycleGAN) for style transfer and a histogram matching module for structure fidelity. The proposed algorithm is demonstrated using female pelvic MRI images from two 3 T systems and compared with three state-of-the-art methods and one conventional method. In the absence of traveling phantoms, we evaluate harmonization from three perspectives: image fidelity, ability to remove inter-center differences, and influence on the downstream model. Main results. The improved image sharpness and structure fidelity are observed using the proposed harmonization pipeline. It largely decreases the number of features with a significant difference between two systems (from 64 to 45, lower than dualGAN: 57, cycleGAN: 59, ComBat: 64, and CLAHE: 54). In the downstream cervical cancer classification, it yields an area under the receiver operating characteristic curve of 0.894 (higher than dualGAN: 0.828, cycleGAN: 0.812, ComBat: 0.685, and CLAHE: 0.770). Significance. Our SSH method yields superior generality of downstream cervical cancer classification models by significantly decreasing the difference in radiomics features, and it achieves greater image fidelity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
么么哒发布了新的文献求助10
2秒前
朱猪侠发布了新的文献求助10
2秒前
cruise发布了新的文献求助10
3秒前
2339822272发布了新的文献求助10
4秒前
灵运完成签到,获得积分10
4秒前
swh完成签到,获得积分10
5秒前
奋斗的苞络完成签到,获得积分20
5秒前
xixi很困完成签到,获得积分10
5秒前
Eason小川完成签到,获得积分10
5秒前
研友_8YKmvn完成签到,获得积分10
5秒前
BASS完成签到,获得积分10
5秒前
柴胡发布了新的文献求助10
5秒前
科研小白完成签到,获得积分10
6秒前
周周发布了新的文献求助10
7秒前
7秒前
小小黑完成签到,获得积分20
8秒前
悠悠发布了新的文献求助30
9秒前
9秒前
老字号炸洋芋完成签到,获得积分20
10秒前
Eason小川发布了新的文献求助10
11秒前
粉色的小天鹅完成签到,获得积分10
11秒前
汉堡包应助柴胡采纳,获得10
11秒前
13秒前
13秒前
月亮0927发布了新的文献求助10
14秒前
meimei发布了新的文献求助10
14秒前
15秒前
文艺的雨灵完成签到 ,获得积分10
17秒前
Owen应助拾三采纳,获得10
17秒前
尔玉完成签到 ,获得积分10
19秒前
19秒前
卡戎529完成签到 ,获得积分10
19秒前
weilanshun发布了新的文献求助10
20秒前
Xu完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
认真绿竹发布了新的文献求助10
22秒前
风清扬发布了新的文献求助10
22秒前
头不大完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460966
求助须知:如何正确求助?哪些是违规求助? 4566057
关于积分的说明 14302811
捐赠科研通 4491640
什么是DOI,文献DOI怎么找? 2460418
邀请新用户注册赠送积分活动 1449754
关于科研通互助平台的介绍 1425527