已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Self-supervised learning for multi-center magnetic resonance imaging harmonization without traveling phantoms

计算机科学 人工智能 图像配准 计算机视觉 忠诚 直方图 模式识别(心理学) 图像(数学) 电信
作者
Xiao Chang,Xin Cai,Yibo Dan,Yang Song,Qing Lu,Guang Yang,Shengdong Nie
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (14): 145004-145004 被引量:4
标识
DOI:10.1088/1361-6560/ac7b66
摘要

Abstract Objective. With the progress of artificial intelligence (AI) in magnetic resonance imaging (MRI), large-scale multi-center MRI datasets have a great influence on diagnosis accuracy and model performance. However, multi-center images are highly variable due to the variety of scanners or scanning parameters in use, which has a negative effect on the generality of AI-based diagnosis models. To address this problem, we propose a self-supervised harmonization (SSH) method. Approach. Mapping the style of images between centers allows harmonization without traveling phantoms to be formalized as an unpaired image-to-image translation problem between two domains. The mapping is a two-stage transform, consisting of a modified cycle generative adversarial network (cycleGAN) for style transfer and a histogram matching module for structure fidelity. The proposed algorithm is demonstrated using female pelvic MRI images from two 3 T systems and compared with three state-of-the-art methods and one conventional method. In the absence of traveling phantoms, we evaluate harmonization from three perspectives: image fidelity, ability to remove inter-center differences, and influence on the downstream model. Main results. The improved image sharpness and structure fidelity are observed using the proposed harmonization pipeline. It largely decreases the number of features with a significant difference between two systems (from 64 to 45, lower than dualGAN: 57, cycleGAN: 59, ComBat: 64, and CLAHE: 54). In the downstream cervical cancer classification, it yields an area under the receiver operating characteristic curve of 0.894 (higher than dualGAN: 0.828, cycleGAN: 0.812, ComBat: 0.685, and CLAHE: 0.770). Significance. Our SSH method yields superior generality of downstream cervical cancer classification models by significantly decreasing the difference in radiomics features, and it achieves greater image fidelity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助研友_ZegWmL采纳,获得10
刚刚
麦冬冬发布了新的文献求助20
1秒前
1秒前
上官若男应助王婷采纳,获得10
1秒前
1秒前
gao0505完成签到,获得积分10
1秒前
NexusExplorer应助Corn_Dog采纳,获得10
4秒前
5秒前
大圣发布了新的文献求助10
6秒前
8秒前
bible完成签到,获得积分20
8秒前
明理的踏歌完成签到,获得积分10
9秒前
younglsc2发布了新的文献求助10
10秒前
Jasper应助qmx采纳,获得10
11秒前
bkagyin应助铁臂阿童木采纳,获得10
11秒前
12秒前
bible发布了新的文献求助30
12秒前
13秒前
13秒前
俏皮友瑶完成签到,获得积分10
15秒前
16秒前
江峰发布了新的文献求助10
17秒前
江峰发布了新的文献求助10
17秒前
江峰发布了新的文献求助10
17秒前
江峰发布了新的文献求助10
17秒前
研友_ZegWmL发布了新的文献求助10
17秒前
17秒前
王婷发布了新的文献求助10
17秒前
18秒前
zxt12305313完成签到 ,获得积分10
18秒前
19秒前
finerain7完成签到,获得积分10
19秒前
nannan完成签到,获得积分10
19秒前
吞金兽发布了新的文献求助10
20秒前
21秒前
英俊的铭应助研友_ZegWmL采纳,获得10
22秒前
Mars夜愿完成签到,获得积分10
22秒前
22秒前
CRT发布了新的文献求助10
24秒前
Mars夜愿发布了新的文献求助10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150321
求助须知:如何正确求助?哪些是违规求助? 2801489
关于积分的说明 7844908
捐赠科研通 2458975
什么是DOI,文献DOI怎么找? 1308883
科研通“疑难数据库(出版商)”最低求助积分说明 628582
版权声明 601727