Rolling Bearing Fault Diagnosis Based on Improved GAN and 2-D Representation of Acoustic Emission Signals

计算机科学 鉴别器 停工期 卷积神经网络 断层(地质) 分类器(UML) 模式识别(心理学) 时域 方位(导航) 人工智能 滚动轴承 故障检测与隔离 数据挖掘 探测器 计算机视觉 电信 物理 量子力学 地震学 执行机构 振动 地质学 操作系统
作者
Minh Pham,Jong-Myon Kim,Cheol Hong Kim
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 78056-78069 被引量:45
标识
DOI:10.1109/access.2022.3193244
摘要

Bearing fault diagnosis is essential in manufacturing systems to avoid problems such as downtime costs. Convolutional neural network (CNN) models have enabled a new generation of intelligent bearing fault diagnosis methods for smart manufacturing owing to their capability to extract features for 2-dimensional (2D) representations, such as signals represented in the time-frequency domain. Nevertheless, the cost and time required to collect sufficient training data tend to result in a lack of data and data imbalance in real fault diagnosis scenarios. This inevitable consequence leads to a high misclassification rate in conventional CNN models. In this study, to address this problem, we propose a novel effective generative adversarial network (GAN)-based method for rolling bearing fault diagnosis in early-stage and low rotational speeds based on data enhancement, which uses acoustic emission (AE) as a monitoring signal. In the proposed approach, generator, discriminator, and fault classifier models are trained simultaneously with the proposed strategy for updating parameters to avoid the gradient vanishing problem and outperform conventional methods. The fault classifier was developed based on CNN models which are compatible with 2-D signal representations represented by a constant-Q transform. The results of experiments conducted with unbalanced compound fault datasets verify the capabilities of the proposed method in various diagnosis scenarios compared with traditional methods, including SVM, CNN, and DCGAN models.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
she发布了新的文献求助30
刚刚
晨子发布了新的文献求助10
2秒前
wym发布了新的文献求助10
2秒前
思源应助冷酷的凡霜采纳,获得10
3秒前
樱桃发布了新的文献求助10
4秒前
田静然发布了新的文献求助10
5秒前
extra完成签到,获得积分10
8秒前
wym完成签到,获得积分10
12秒前
樱桃发布了新的文献求助10
13秒前
yunxiao完成签到 ,获得积分10
14秒前
冷酷的凡霜完成签到,获得积分20
16秒前
田様应助刚国忠采纳,获得10
16秒前
18秒前
19秒前
景辞完成签到,获得积分10
20秒前
沈清酌应助科研通管家采纳,获得10
21秒前
21秒前
Orange应助科研通管家采纳,获得20
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
沈清酌应助科研通管家采纳,获得10
21秒前
沈清酌应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
stiger应助科研通管家采纳,获得10
21秒前
紫罗风韵发布了新的文献求助20
22秒前
风清扬发布了新的文献求助10
22秒前
体贴的青烟完成签到,获得积分10
24秒前
25秒前
VK2801发布了新的文献求助10
25秒前
25秒前
26秒前
焦糖布丁脑袋完成签到,获得积分10
27秒前
SciGPT应助危机的百褶裙采纳,获得10
29秒前
pragmatic发布了新的文献求助10
31秒前
刚国忠发布了新的文献求助10
31秒前
32秒前
科目三应助pragmatic采纳,获得10
35秒前
漂亮的抽屉完成签到,获得积分10
36秒前
NexusExplorer应助吴艺帆采纳,获得10
38秒前
尊敬乐蕊完成签到,获得积分10
39秒前
善学以致用应助sci大户采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877742
求助须知:如何正确求助?哪些是违规求助? 6545170
关于积分的说明 15682078
捐赠科研通 4996405
什么是DOI,文献DOI怎么找? 2692689
邀请新用户注册赠送积分活动 1634723
关于科研通互助平台的介绍 1592383