Development of a machine learning-based risk prediction model for cerebral infarction and comparison with nomogram model

列线图 医学 接收机工作特性 队列 机器学习 支持向量机 逻辑回归 人工智能 随机森林 曲线下面积 切断 内科学 计算机科学 量子力学 物理
作者
Xuewen Li,Yi‐Ting Wang,Jiancheng Xu
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:314: 341-348 被引量:15
标识
DOI:10.1016/j.jad.2022.07.045
摘要

Development of a cerebral infarction (CI) risk prediction model by mining routine test big data with machine learning algorithms.Cohort 1 included 2017 CI patients and health checkers, and the optimal machine learning algorithms in Extreme gradient Boosting (XgBoost), Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF) were selected to mine all routine test data of the enrolled subjects for screening CI model features. Cohort 2 included patients with CI and Non-CI from 2018 to 2020 to develop an early warning model for CI and was analyzed in subgroups with a cutoff of 50 years. Cohort 3 included CI patients versus Non-CI patients in 2021, and a nomogram models was developed for comparison with the machine learning model.The optimal algorithm XgBoost was used to develop a CI risk prediction model CI-Lab8 containing eight characteristics of fibrinogen, age, glucose, mean erythrocyte hemoglobin concentration, albumin, neutrophil absolute value, activated partial thromboplastin time, and triglycerides. The model had an AUC of 0.823 in cohort 2, significantly higher than the FIB (AUC = 0.737), which ranked first in feature importance. CI-Lab8 also had higher diagnostic accuracy in CI patients <50 years of age (AUC = 0.800), slightly lower than in CI patients ≥50 years of age (AUC = 0.856). Receiver operating characteristic curve, calibration curve, and decision curve analysis in cohort 3 showed CI-Lab8 to be superior to nomogram.In this study, the CI risk prediction model developed by XgBoost algorithm outperformed the nomogram model and had higher diagnostic accuracy for CI patients in both <50 and ≥50 years old, which may assist clinical assessment for CI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuxiLuo完成签到,获得积分10
4秒前
5秒前
5秒前
Weiweiweixiao完成签到,获得积分10
6秒前
顾矜应助认真的初翠采纳,获得10
8秒前
热心不凡完成签到,获得积分10
8秒前
8秒前
好好学习的小学生完成签到 ,获得积分10
8秒前
顾矜应助步凡采纳,获得10
8秒前
日富一日的fighter完成签到,获得积分10
9秒前
刘YF完成签到,获得积分10
9秒前
10秒前
好好学习发10分完成签到,获得积分10
10秒前
玄叶发布了新的文献求助10
10秒前
ty心明亮完成签到 ,获得积分10
11秒前
12秒前
陈月月鸟完成签到,获得积分10
13秒前
14秒前
zwk发布了新的文献求助30
15秒前
17秒前
17秒前
17秒前
虚幻初之发布了新的文献求助10
18秒前
玄叶完成签到,获得积分10
18秒前
19秒前
惊蛰完成签到,获得积分10
19秒前
嘟嘟嘟嘟发布了新的文献求助10
19秒前
zzzzzzzp应助hhh采纳,获得10
20秒前
天天快乐应助鬼火采纳,获得10
22秒前
磊少发布了新的文献求助10
22秒前
baibai发布了新的文献求助10
23秒前
MOMO完成签到,获得积分10
23秒前
613发布了新的文献求助10
24秒前
QPP完成签到,获得积分10
24秒前
有梦想的咸鱼完成签到,获得积分10
24秒前
Ava应助Enid采纳,获得10
27秒前
可爱的函函应助默默采纳,获得10
27秒前
yyyuuu完成签到,获得积分20
28秒前
步凡完成签到,获得积分10
28秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975543
求助须知:如何正确求助?哪些是违规求助? 3519971
关于积分的说明 11200248
捐赠科研通 3256311
什么是DOI,文献DOI怎么找? 1798213
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806338