Development of a machine learning-based risk prediction model for cerebral infarction and comparison with nomogram model

列线图 医学 接收机工作特性 队列 机器学习 支持向量机 逻辑回归 人工智能 随机森林 曲线下面积 切断 内科学 计算机科学 量子力学 物理
作者
Xuewen Li,Yi‐Ting Wang,Jiancheng Xu
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:314: 341-348 被引量:15
标识
DOI:10.1016/j.jad.2022.07.045
摘要

Development of a cerebral infarction (CI) risk prediction model by mining routine test big data with machine learning algorithms.Cohort 1 included 2017 CI patients and health checkers, and the optimal machine learning algorithms in Extreme gradient Boosting (XgBoost), Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF) were selected to mine all routine test data of the enrolled subjects for screening CI model features. Cohort 2 included patients with CI and Non-CI from 2018 to 2020 to develop an early warning model for CI and was analyzed in subgroups with a cutoff of 50 years. Cohort 3 included CI patients versus Non-CI patients in 2021, and a nomogram models was developed for comparison with the machine learning model.The optimal algorithm XgBoost was used to develop a CI risk prediction model CI-Lab8 containing eight characteristics of fibrinogen, age, glucose, mean erythrocyte hemoglobin concentration, albumin, neutrophil absolute value, activated partial thromboplastin time, and triglycerides. The model had an AUC of 0.823 in cohort 2, significantly higher than the FIB (AUC = 0.737), which ranked first in feature importance. CI-Lab8 also had higher diagnostic accuracy in CI patients <50 years of age (AUC = 0.800), slightly lower than in CI patients ≥50 years of age (AUC = 0.856). Receiver operating characteristic curve, calibration curve, and decision curve analysis in cohort 3 showed CI-Lab8 to be superior to nomogram.In this study, the CI risk prediction model developed by XgBoost algorithm outperformed the nomogram model and had higher diagnostic accuracy for CI patients in both <50 and ≥50 years old, which may assist clinical assessment for CI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠小懒虫完成签到,获得积分10
刚刚
Jasper应助xiaoxiao采纳,获得30
1秒前
wxj发布了新的文献求助10
1秒前
完美世界应助Promise采纳,获得10
1秒前
俊逸的问兰完成签到 ,获得积分10
2秒前
还没想好完成签到,获得积分10
4秒前
情怀应助123采纳,获得10
4秒前
5秒前
川后静波完成签到,获得积分10
5秒前
田様应助jos采纳,获得10
7秒前
7秒前
华仔应助Nick Green采纳,获得10
7秒前
思源应助HHZ采纳,获得10
8秒前
隐形曼青应助heetrans采纳,获得10
8秒前
8秒前
NexusExplorer应助乔治采纳,获得10
9秒前
momo完成签到,获得积分10
10秒前
10秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
奋斗瑶发布了新的文献求助10
13秒前
13秒前
沉默的初柳完成签到,获得积分10
14秒前
yeahyeahyeah发布了新的文献求助10
14秒前
lxd完成签到,获得积分10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
Maestro_S应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得30
17秒前
大力契应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
18秒前
123发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123961
求助须知:如何正确求助?哪些是违规求助? 4328299
关于积分的说明 13487058
捐赠科研通 4162704
什么是DOI,文献DOI怎么找? 2281736
邀请新用户注册赠送积分活动 1283059
关于科研通互助平台的介绍 1222170