Development of a machine learning-based risk prediction model for cerebral infarction and comparison with nomogram model

列线图 医学 接收机工作特性 队列 机器学习 支持向量机 逻辑回归 人工智能 随机森林 曲线下面积 切断 内科学 计算机科学 量子力学 物理
作者
Xuewen Li,Yi‐Ting Wang,Jiancheng Xu
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:314: 341-348 被引量:15
标识
DOI:10.1016/j.jad.2022.07.045
摘要

Development of a cerebral infarction (CI) risk prediction model by mining routine test big data with machine learning algorithms.Cohort 1 included 2017 CI patients and health checkers, and the optimal machine learning algorithms in Extreme gradient Boosting (XgBoost), Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF) were selected to mine all routine test data of the enrolled subjects for screening CI model features. Cohort 2 included patients with CI and Non-CI from 2018 to 2020 to develop an early warning model for CI and was analyzed in subgroups with a cutoff of 50 years. Cohort 3 included CI patients versus Non-CI patients in 2021, and a nomogram models was developed for comparison with the machine learning model.The optimal algorithm XgBoost was used to develop a CI risk prediction model CI-Lab8 containing eight characteristics of fibrinogen, age, glucose, mean erythrocyte hemoglobin concentration, albumin, neutrophil absolute value, activated partial thromboplastin time, and triglycerides. The model had an AUC of 0.823 in cohort 2, significantly higher than the FIB (AUC = 0.737), which ranked first in feature importance. CI-Lab8 also had higher diagnostic accuracy in CI patients <50 years of age (AUC = 0.800), slightly lower than in CI patients ≥50 years of age (AUC = 0.856). Receiver operating characteristic curve, calibration curve, and decision curve analysis in cohort 3 showed CI-Lab8 to be superior to nomogram.In this study, the CI risk prediction model developed by XgBoost algorithm outperformed the nomogram model and had higher diagnostic accuracy for CI patients in both <50 and ≥50 years old, which may assist clinical assessment for CI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助迷路山晴采纳,获得10
刚刚
aaa发布了新的文献求助10
1秒前
思源应助jasmine采纳,获得10
3秒前
领导范儿应助高茵采纳,获得10
3秒前
3秒前
张惠发布了新的文献求助10
4秒前
陈洋发布了新的文献求助10
5秒前
5秒前
5秒前
做不了一点科研完成签到 ,获得积分10
6秒前
6秒前
7秒前
jjyy完成签到,获得积分10
8秒前
研友_VZG7GZ应助李联洪采纳,获得10
9秒前
科研通AI5应助鸭子采纳,获得10
9秒前
Hello应助陈洋采纳,获得10
9秒前
10秒前
10秒前
10秒前
mmh完成签到,获得积分10
10秒前
jmn应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
11秒前
李联洪应助科研通管家采纳,获得30
11秒前
奋斗小松鼠完成签到 ,获得积分10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得30
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
高茵给高茵的求助进行了留言
12秒前
jasmine给jasmine的求助进行了留言
13秒前
13秒前
雨花花发布了新的文献求助10
13秒前
13秒前
14秒前
aaa完成签到,获得积分20
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206942
求助须知:如何正确求助?哪些是违规求助? 4385146
关于积分的说明 13655821
捐赠科研通 4243590
什么是DOI,文献DOI怎么找? 2328188
邀请新用户注册赠送积分活动 1325910
关于科研通互助平台的介绍 1278098