已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of a machine learning-based risk prediction model for cerebral infarction and comparison with nomogram model

列线图 医学 接收机工作特性 队列 机器学习 支持向量机 逻辑回归 人工智能 随机森林 曲线下面积 切断 内科学 计算机科学 物理 量子力学
作者
Xuewen Li,Yi‐Ting Wang,Jiancheng Xu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:314: 341-348 被引量:10
标识
DOI:10.1016/j.jad.2022.07.045
摘要

Development of a cerebral infarction (CI) risk prediction model by mining routine test big data with machine learning algorithms. Cohort 1 included 2017 CI patients and health checkers, and the optimal machine learning algorithms in Extreme gradient Boosting (XgBoost), Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF) were selected to mine all routine test data of the enrolled subjects for screening CI model features. Cohort 2 included patients with CI and Non-CI from 2018 to 2020 to develop an early warning model for CI and was analyzed in subgroups with a cutoff of 50 years. Cohort 3 included CI patients versus Non-CI patients in 2021, and a nomogram models was developed for comparison with the machine learning model. The optimal algorithm XgBoost was used to develop a CI risk prediction model CI-Lab8 containing eight characteristics of fibrinogen, age, glucose, mean erythrocyte hemoglobin concentration, albumin, neutrophil absolute value, activated partial thromboplastin time, and triglycerides. The model had an AUC of 0.823 in cohort 2, significantly higher than the FIB (AUC = 0.737), which ranked first in feature importance. CI-Lab8 also had higher diagnostic accuracy in CI patients <50 years of age (AUC = 0.800), slightly lower than in CI patients ≥50 years of age (AUC = 0.856). Receiver operating characteristic curve, calibration curve, and decision curve analysis in cohort 3 showed CI-Lab8 to be superior to nomogram. In this study, the CI risk prediction model developed by XgBoost algorithm outperformed the nomogram model and had higher diagnostic accuracy for CI patients in both <50 and ≥50 years old, which may assist clinical assessment for CI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
捏捏我的小短腿完成签到,获得积分10
2秒前
genomed应助清脆的书桃采纳,获得30
2秒前
Singularity应助jiajia采纳,获得20
5秒前
10秒前
vivi完成签到,获得积分10
10秒前
hui_L发布了新的文献求助10
11秒前
12秒前
chiyudoubao完成签到 ,获得积分10
12秒前
13秒前
听风发布了新的文献求助10
13秒前
yoga完成签到 ,获得积分10
13秒前
FashionBoy应助smj采纳,获得10
14秒前
充电宝应助lalalaaaa采纳,获得10
15秒前
zzz发布了新的文献求助30
16秒前
cycy发布了新的文献求助30
17秒前
杨ang发布了新的文献求助20
17秒前
19秒前
hui_L完成签到,获得积分20
20秒前
摩卡发布了新的文献求助10
24秒前
Dragon完成签到 ,获得积分10
24秒前
25秒前
晓晓发布了新的文献求助10
25秒前
rnf完成签到,获得积分10
30秒前
lalalaaaa发布了新的文献求助10
30秒前
凉席电扇花露水完成签到 ,获得积分10
31秒前
34秒前
乐乐乐乐乐乐应助听风采纳,获得10
36秒前
37秒前
rnf完成签到,获得积分10
38秒前
郜雨寒发布了新的文献求助10
40秒前
研二发核心完成签到,获得积分10
42秒前
44秒前
45秒前
JamesPei应助liweiDr采纳,获得10
45秒前
爱静静应助holly采纳,获得10
46秒前
所所应助躺平摆烂小饼干采纳,获得10
47秒前
钱多多完成签到,获得积分10
47秒前
sci梦发布了新的文献求助10
48秒前
48秒前
852应助Yiyi采纳,获得10
50秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139360
求助须知:如何正确求助?哪些是违规求助? 2790295
关于积分的说明 7794749
捐赠科研通 2446704
什么是DOI,文献DOI怎么找? 1301351
科研通“疑难数据库(出版商)”最低求助积分说明 626134
版权声明 601123