Ensemble Voting Regression Based on Machine Learning for Predicting Medical Waste: A Case from Turkey

随机森林 Boosting(机器学习) 平均绝对百分比误差 均方误差 阿达布思 集成学习 梯度升压 线性回归 机器学习 计算机科学 回归 人工智能 集合预报 回归分析 统计 绝对偏差 数学 支持向量机
作者
Babak Daneshvar Rouyendegh,Burcu Devrim-İçtenbaş
出处
期刊:Mathematics [MDPI AG]
卷期号:10 (14): 2466-2466 被引量:35
标识
DOI:10.3390/math10142466
摘要

Predicting medical waste (MW) properly is vital for an effective waste management system (WMS), but it is difficult because of inadequate data and various factors that impact MW. This study’s primary objective was to develop an ensemble voting regression algorithm based on machine learning (ML) algorithms such as random forests (RFs), gradient boosting machines (GBMs), and adaptive boosting (AdaBoost) to predict the MW for Istanbul, the largest city in Turkey. This was the first study to use ML algorithms to predict MW, to our knowledge. First, three ML algorithms were developed based on official data. To compare their performances, performance measures such as mean absolute deviation (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination (R-squared) were calculated. Among the standalone ML models, RF achieved the best performance. Then, these base models were used to construct the proposed ensemble voting regression (VR) model utilizing weighted averages according to the base models’ performances. The proposed model outperformed three baseline models, with the lowest RMSE (843.70). This study gives an effective tool to practitioners and decision-makers for planning and constructing medical waste management systems by predicting the MW quantity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助Ll采纳,获得10
刚刚
1秒前
1秒前
孟柠柠发布了新的文献求助10
1秒前
青阳完成签到,获得积分10
2秒前
科研狗发布了新的文献求助20
3秒前
4秒前
4秒前
jarenthar完成签到 ,获得积分10
4秒前
4秒前
丘比特应助hata采纳,获得10
4秒前
顾矜应助lszhw采纳,获得10
5秒前
lqq完成签到 ,获得积分10
5秒前
5秒前
共享精神应助拟拟采纳,获得10
5秒前
5秒前
lhy12345完成签到,获得积分10
5秒前
非常可爱发布了新的文献求助20
6秒前
6秒前
6秒前
6秒前
科研民工发布了新的文献求助10
7秒前
文艺的初蓝完成签到 ,获得积分10
7秒前
TiAmo发布了新的文献求助10
7秒前
刘十三完成签到,获得积分10
7秒前
7秒前
犹豫忆南完成签到,获得积分10
8秒前
科研通AI5应助kingwhitewing采纳,获得10
9秒前
9秒前
mm关注了科研通微信公众号
9秒前
xieyuanxing发布了新的文献求助10
9秒前
9秒前
左然然完成签到,获得积分10
9秒前
9秒前
人福药业完成签到,获得积分10
10秒前
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
细腻晓露发布了新的文献求助10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740