Application of RNN on GNSS Reflectometry Sea level monitoring

反射计 计算机科学 全球导航卫星系统应用 数据集 离群值 遥感 循环神经网络 全球定位系统 异常检测 模式识别(心理学) 算法 人工智能 地质学 人工神经网络 计算机视觉 电信 时域
作者
Nutpapon Limsupavanich,Bofeng Guo,Xiaomei Fu
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:43 (10): 3592-3608 被引量:3
标识
DOI:10.1080/01431161.2022.2100231
摘要

Global Navigation Satellite System reflectometry (GNSS-R) can be used to monitor the sea level with the signal-to-noise ratio (SNR) using the spectral analysis approach where the additional frequencies in SNR lead to small errors. This study is the first attempt to apply the Recurrent Neural Networks (RNN) approach to reduce the effect of additional frequencies in SNR. The output from the RNN approach is processed by the spectral analysis to estimate the frequency. To analyse the number of effective results, all results are processed by the outlier removal method which removes the outliers only depending on the results under low elevation angles. The data set used in the experiment is sampled from the SC02 GPS station. The experiment is set up by using abnormal elevation angle ranges to observe the performance. The results from the RNN-based method, detrend SNR method and EMD-based method are compared to the reference sea level data. RNN models are trained differently in three experiments based on 7-day historical sea level data, 7-day tide prediction data and 1-month tide prediction data. The results show that the RNN increases the temporal resolutions for all experiments and provides sufficient accuracy as compared to the detrend SNR method and EMD-based method. Using tide prediction data instead of sea level data as the training data improves temporal resolutions and correlations. RNN can be applied as the data preparation and denoising method for SNR spectral analysis sea level monitoring. Compared to the EMD-based method, the RNN-based denoising method is more suitable for short SNR data records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaosu发布了新的文献求助10
刚刚
大模型应助辛勤的老鼠采纳,获得10
2秒前
yys10l完成签到,获得积分10
2秒前
3秒前
润润润发布了新的文献求助10
3秒前
李健应助小梦采纳,获得10
3秒前
4秒前
4秒前
摇匀发布了新的文献求助10
4秒前
6秒前
无花果应助小倩倩采纳,获得10
6秒前
田様应助Yoyo采纳,获得10
7秒前
xuzekun发布了新的文献求助10
7秒前
sumu112发布了新的文献求助10
8秒前
9秒前
9秒前
xiao完成签到 ,获得积分20
9秒前
张张包发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
12秒前
12秒前
上官若男应助leeww采纳,获得10
12秒前
12秒前
丁一完成签到,获得积分10
12秒前
14秒前
科研通AI5应助明亮妙芙采纳,获得10
15秒前
Alex发布了新的文献求助10
15秒前
小阿泽发布了新的文献求助10
16秒前
思源应助科研废物采纳,获得10
16秒前
MOB发布了新的文献求助10
16秒前
16秒前
17秒前
11完成签到 ,获得积分10
17秒前
pK发布了新的文献求助10
17秒前
唐政清发布了新的文献求助10
18秒前
18秒前
18秒前
qq发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560954
求助须知:如何正确求助?哪些是违规求助? 3134721
关于积分的说明 9409376
捐赠科研通 2834952
什么是DOI,文献DOI怎么找? 1558345
邀请新用户注册赠送积分活动 728095
科研通“疑难数据库(出版商)”最低求助积分说明 716686