Thermal droop, i.e., the loss of emission efficiency over a certain temperature range, is an important performance bottleneck for the successful commercial application of deep-ultraviolet light emitting diodes. In this study, we examined the mechanism of two thermal droop processes of 255 nm AlGaN quantum well light emitting diodes under temperature stresses in order to obtain steady optical output in a broad temperature range. We discovered that the increase in leakage current in the low forward bias region is accompanied by a decrease in apparent carrier concentration of quantum wells near the p side during the thermal droop process at high temperature (>300 K), indicating that the activation of thermal defects enhances the trap assisted tunneling effect and causes the optical power to decrease more significantly at low current. Compared with normal temperature, the low emission power at low temperatures is attributed to the minority trap H1, which has an activation energy of 0.527 eV at 190 K, according to deep level transient spectrum analysis. At low temperatures above 175 K, the optical power increases as the temperature rises due to enhanced hole injection. By analyzing the droop characteristics, we concluded that the activation of thermal defects is the most probable cause of high temperature thermal droop in 255 nm AlGaN quantum well light emitting diodes, whereas hole trap H1, which is linked to gallium vacancy complexes related defects, is most likely the source of low temperature thermal droop.