定位
宏
表达式(计算机科学)
计算机科学
人工智能
水准点(测量)
模式识别(心理学)
特征提取
定位关键字
期限(时间)
人工神经网络
特征(语言学)
地图学
哲学
地理
程序设计语言
物理
量子力学
语言学
作者
Luoyang Xue,Ting Zhu,JingSong Hao
标识
DOI:10.1109/iscid52796.2021.00072
摘要
Facial macro- and micro-expression spotting is an important task in the micro-expression analysis. This paper presents a Two-Stage Macro- and Micro-expression Spotting Network (TSMSNet) to locate the temporal positions of macro-and micro-expression in long-term videos. It is composed of two sub-networks. The first sub-network is a Triplet-Stream Attention Network (TSANet), which uses three spatial feature extraction branches and attention mechanism to extract the spatial-temporal features. The TSANet is utilized to spot the macro- and micro-expression apex frames. According to the predicted apex frames, the initial expression intervals are recommended. The second network is a Spatial-Temporal Classification Network (STCNet), which utilizes the initial expression intervals to predict the multi-scale expression in-terval proposals. Comparative results show that the proposed expression spotting method has achieved the state-of-the-art performance in two benchmark databases CAS(ME) 2 and SAMM Long Videos.
科研通智能强力驱动
Strongly Powered by AbleSci AI