Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types

表观遗传学 计算机科学 聚类分析 数据挖掘 计算生物学 DNA甲基化 人工智能 生物 生物化学 基因 基因表达
作者
Wenming Wu,Wensheng Zhang,Xiaoke Ma
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:3
标识
DOI:10.1093/bib/bbab546
摘要

Advances in single-cell biotechnologies simultaneously generate the transcriptomic and epigenomic profiles at cell levels, providing an opportunity for investigating cell fates. Although great efforts have been devoted to either of them, the integrative analysis of single-cell multi-omics data is really limited because of the heterogeneity, noises and sparsity of single-cell profiles. In this study, a network-based integrative clustering algorithm (aka NIC) is present for the identification of cell types by fusing the parallel single-cell transcriptomic (scRNA-seq) and epigenomic profiles (scATAC-seq or DNA methylation). To avoid heterogeneity of multi-omics data, NIC automatically learns the cell-cell similarity graphs, which transforms the fusion of multi-omics data into the analysis of multiple networks. Then, NIC employs joint non-negative matrix factorization to learn the shared features of cells by exploiting the structure of learned cell-cell similarity networks, providing a better way to characterize the features of cells. The graph learning and integrative analysis procedures are jointly formulated as an optimization problem, and then the update rules are derived. Thirteen single-cell multi-omics datasets from various tissues and organisms are adopted to validate the performance of NIC, and the experimental results demonstrate that the proposed algorithm significantly outperforms the state-of-the-art methods in terms of various measurements. The proposed algorithm provides an effective strategy for the integrative analysis of single-cell multi-omics data (The software is coded using Matlab, and is freely available for academic https://github.com/xkmaxidian/NIC ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
学业顺利完成签到,获得积分10
刚刚
JJ发布了新的文献求助10
刚刚
刚刚
哈哈发布了新的文献求助30
2秒前
ml完成签到,获得积分10
4秒前
4秒前
疯狂的师完成签到,获得积分10
4秒前
小机灵发布了新的文献求助10
5秒前
美满花生发布了新的文献求助10
6秒前
7秒前
玉宣化完成签到,获得积分10
7秒前
kanglan完成签到,获得积分10
7秒前
JamesPei应助都是采纳,获得10
8秒前
8秒前
Allare关注了科研通微信公众号
9秒前
9秒前
王敏发布了新的文献求助10
9秒前
小蘑菇应助amber采纳,获得10
9秒前
无花果应助科研通管家采纳,获得30
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
11秒前
Duolalala完成签到 ,获得积分20
11秒前
桐桐应助感性的俊驰采纳,获得10
11秒前
慕青应助真不想吃辣采纳,获得10
12秒前
天真凡灵完成签到,获得积分10
12秒前
13秒前
晓婷婷完成签到,获得积分10
14秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076845
求助须知:如何正确求助?哪些是违规求助? 2729873
关于积分的说明 7510233
捐赠科研通 2378050
什么是DOI,文献DOI怎么找? 1261026
科研通“疑难数据库(出版商)”最低求助积分说明 611213
版权声明 597203