Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types

表观遗传学 计算机科学 聚类分析 数据挖掘 计算生物学 DNA甲基化 人工智能 生物 生物化学 基因 基因表达
作者
Wenming Wu,Wensheng Zhang,Xiaoke Ma
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:3
标识
DOI:10.1093/bib/bbab546
摘要

Advances in single-cell biotechnologies simultaneously generate the transcriptomic and epigenomic profiles at cell levels, providing an opportunity for investigating cell fates. Although great efforts have been devoted to either of them, the integrative analysis of single-cell multi-omics data is really limited because of the heterogeneity, noises and sparsity of single-cell profiles. In this study, a network-based integrative clustering algorithm (aka NIC) is present for the identification of cell types by fusing the parallel single-cell transcriptomic (scRNA-seq) and epigenomic profiles (scATAC-seq or DNA methylation). To avoid heterogeneity of multi-omics data, NIC automatically learns the cell-cell similarity graphs, which transforms the fusion of multi-omics data into the analysis of multiple networks. Then, NIC employs joint non-negative matrix factorization to learn the shared features of cells by exploiting the structure of learned cell-cell similarity networks, providing a better way to characterize the features of cells. The graph learning and integrative analysis procedures are jointly formulated as an optimization problem, and then the update rules are derived. Thirteen single-cell multi-omics datasets from various tissues and organisms are adopted to validate the performance of NIC, and the experimental results demonstrate that the proposed algorithm significantly outperforms the state-of-the-art methods in terms of various measurements. The proposed algorithm provides an effective strategy for the integrative analysis of single-cell multi-omics data (The software is coded using Matlab, and is freely available for academic https://github.com/xkmaxidian/NIC ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
RC_Wang应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得30
1秒前
111发布了新的文献求助10
2秒前
keyanlv完成签到,获得积分10
2秒前
富贵儿发布了新的文献求助10
4秒前
冯度翩翩完成签到,获得积分10
4秒前
sweetbearm应助健壮的涑采纳,获得10
4秒前
村里傻小子完成签到,获得积分20
4秒前
田様应助Khr1stINK采纳,获得10
5秒前
傲娇的凡旋应助小周采纳,获得10
6秒前
潇潇潇完成签到 ,获得积分10
6秒前
7秒前
英俊的铭应助XShu采纳,获得10
8秒前
Hello应助一只大肥猫采纳,获得10
9秒前
allyceacheng完成签到,获得积分10
9秒前
科研通AI5应助phd采纳,获得10
10秒前
10秒前
WTaMi完成签到 ,获得积分10
10秒前
zoe发布了新的文献求助10
10秒前
Owen应助无奈的酒窝采纳,获得10
11秒前
12秒前
14秒前
14秒前
14秒前
科研通AI5应助wangyanwxy采纳,获得10
15秒前
36456657应助豆dou采纳,获得10
15秒前
16秒前
16秒前
17秒前
buno应助jy采纳,获得10
18秒前
paparazzi221发布了新的文献求助10
19秒前
田生完成签到,获得积分10
19秒前
勤劳的忆寒应助Kiyotaka采纳,获得30
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808