Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types

表观遗传学 计算机科学 聚类分析 数据挖掘 计算生物学 DNA甲基化 人工智能 生物 生物化学 基因表达 基因
作者
Wenming Wu,Wensheng Zhang,Xiaoke Ma
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:3
标识
DOI:10.1093/bib/bbab546
摘要

Advances in single-cell biotechnologies simultaneously generate the transcriptomic and epigenomic profiles at cell levels, providing an opportunity for investigating cell fates. Although great efforts have been devoted to either of them, the integrative analysis of single-cell multi-omics data is really limited because of the heterogeneity, noises and sparsity of single-cell profiles. In this study, a network-based integrative clustering algorithm (aka NIC) is present for the identification of cell types by fusing the parallel single-cell transcriptomic (scRNA-seq) and epigenomic profiles (scATAC-seq or DNA methylation). To avoid heterogeneity of multi-omics data, NIC automatically learns the cell-cell similarity graphs, which transforms the fusion of multi-omics data into the analysis of multiple networks. Then, NIC employs joint non-negative matrix factorization to learn the shared features of cells by exploiting the structure of learned cell-cell similarity networks, providing a better way to characterize the features of cells. The graph learning and integrative analysis procedures are jointly formulated as an optimization problem, and then the update rules are derived. Thirteen single-cell multi-omics datasets from various tissues and organisms are adopted to validate the performance of NIC, and the experimental results demonstrate that the proposed algorithm significantly outperforms the state-of-the-art methods in terms of various measurements. The proposed algorithm provides an effective strategy for the integrative analysis of single-cell multi-omics data (The software is coded using Matlab, and is freely available for academic https://github.com/xkmaxidian/NIC ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
Akim应助小铮采纳,获得10
刚刚
球球应助科研通管家采纳,获得10
刚刚
1111应助科研通管家采纳,获得20
刚刚
Lilian发布了新的文献求助10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
科研助手6应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得30
1秒前
个性元枫应助科研通管家采纳,获得10
1秒前
Akim应助zdz采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科目三应助科研通管家采纳,获得10
1秒前
七七发布了新的文献求助10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
不懈奋进应助科研通管家采纳,获得30
1秒前
无花果应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
zwenng发布了新的文献求助10
3秒前
丘比特应助Sun采纳,获得10
3秒前
3秒前
科研小农民关注了科研通微信公众号
3秒前
活力元冬发布了新的文献求助10
3秒前
cooper完成签到 ,获得积分10
3秒前
4秒前
小马甲应助冷酷新柔采纳,获得10
4秒前
暖暖完成签到,获得积分10
4秒前
BWL完成签到,获得积分10
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016787
求助须知:如何正确求助?哪些是违规求助? 3556966
关于积分的说明 11323317
捐赠科研通 3289698
什么是DOI,文献DOI怎么找? 1812525
邀请新用户注册赠送积分活动 888139
科研通“疑难数据库(出版商)”最低求助积分说明 812121