Predicting heavy metal contents by applying machine learning approaches and environmental covariates in west of Iran

专题地图 随机森林 土壤科学 环境科学 重金属 数字高程模型 采样(信号处理) 协变量 专题制图器 数字土壤制图 仰角(弹道) 土工试验 土壤图 遥感 地质学 计算机科学 数学 统计 机器学习 地图学 土壤水分 地理 环境化学 卫星图像 化学 滤波器(信号处理) 计算机视觉 几何学
作者
Kamran Azizi,Shamsollah Ayoubi,Kamal Nabiolahi,Younes Garosi,René Gislum
出处
期刊:Journal of Geochemical Exploration [Elsevier]
卷期号:233: 106921-106921 被引量:47
标识
DOI:10.1016/j.gexplo.2021.106921
摘要

The cuurent study was performed to predict spatial distribution of some heavy metals (Ni, Fe, Cu, Mn) in western Iran, using environmental covariates and applying two machine learning methods comprised Random forest (RF), and Cubist. In this respect, a combination of different input environmental variables (remote sensing data, topographic attributes, thematic maps and soil properties) were used in modeling under four scenarios (I: remote sensing data (RS); II: RS + topographic attributes resulted from digital elevation model (DEM); III: RS + topographic attributes + thematic maps; IV: RS + topographic attributes + thematic maps +soil properties). The maps of Euclidean distance from mines and roads as well as the geology map have been used as thematic maps. A total of 346 soil samples were taken using stratified random sampling from the surface layers (0–20 cm depth) of the studied area and selected heavy metals (Ni, Fe, Cu, Mn), and soil properties were measured in the laboratory. RF and Cubist models were used to predict soil heavy metals in four scenarios. The results indicated that the best prediction accuracy was achieved for the fourth scenario (IV) when all input variables were combined to predict selected heavy metals. Moreover, two models showed different capability for various metals. According to our results, the random forest model had a high accuracy in predicting Ni (R2 = 0.67) and Cu (R2 = 0.60), In contrast, the Cubist model had a higher accuracy in predicting Mn (R2 = 0.55). For predicting Fe, both models provided a similar accuracy (R2 = 0.73). This study proved the high capability of machine learning methods to use easily available environmental data to predict studied heavy metals in the large scale that are essential for decision making in sustainable management in agricultural and environmental concerns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucien发布了新的文献求助10
刚刚
大胆的鲂完成签到,获得积分10
1秒前
乐乐应助榴莲小胖采纳,获得20
1秒前
搞怪的流沙完成签到,获得积分10
1秒前
123完成签到 ,获得积分10
1秒前
Fanzhijuan完成签到,获得积分10
1秒前
123完成签到,获得积分20
2秒前
天气好的话完成签到,获得积分10
2秒前
解松完成签到,获得积分10
2秒前
zhuzhu完成签到,获得积分10
2秒前
2秒前
无限的铅笔完成签到,获得积分10
2秒前
zhangqq完成签到,获得积分10
3秒前
Kay76完成签到,获得积分10
3秒前
xiao123789完成签到,获得积分10
3秒前
路哈哈完成签到,获得积分10
3秒前
FF完成签到,获得积分10
5秒前
cyrong完成签到,获得积分10
5秒前
科研小趴菜完成签到 ,获得积分10
5秒前
和平港湾完成签到,获得积分10
6秒前
HEIKU应助carrie采纳,获得10
6秒前
lyy完成签到 ,获得积分10
6秒前
啥时候能早睡完成签到 ,获得积分10
6秒前
nine2652完成签到 ,获得积分10
8秒前
ddd完成签到,获得积分10
8秒前
55完成签到,获得积分10
8秒前
Lyue完成签到,获得积分10
9秒前
生生完成签到,获得积分10
9秒前
jagger完成签到,获得积分10
9秒前
Miya_han完成签到,获得积分10
9秒前
Accepted应助LouieHuang采纳,获得10
9秒前
鹿丫丫发布了新的文献求助10
10秒前
song完成签到,获得积分10
10秒前
wuuToiiin完成签到,获得积分10
10秒前
AirJia完成签到,获得积分10
11秒前
ss完成签到,获得积分10
11秒前
8R60d8完成签到,获得积分0
11秒前
11秒前
12秒前
yu完成签到 ,获得积分10
12秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793801
关于积分的说明 7807889
捐赠科研通 2450113
什么是DOI,文献DOI怎么找? 1303653
科研通“疑难数据库(出版商)”最低求助积分说明 627017
版权声明 601350