Geometry-aware fruit grasping estimation for robotic harvesting in apple orchards

人工智能 计算机视觉 计算机科学 几何学 数学
作者
Xing Wang,Hanwen Kang,Hongyu Zhou,Wesley Au,Chao Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:193: 106716-106716 被引量:63
标识
DOI:10.1016/j.compag.2022.106716
摘要

Field robotic harvesting is a promising technique in recent development of agricultural industry. It is vital for robots to recognise and localise fruits before the harvesting in natural orchards. However, the workspace of harvesting robots in orchards is complex: many fruits are occluded by branches and leaves. It is important to estimate a proper grasping pose for each fruit before performing the manipulation. In this study, a geometry-aware network, A3N, is proposed to perform end-to-end instance segmentation and grasping estimation using both color and geometry sensory data from a RGB-D camera. Besides, workspace geometry modelling is applied to assist the robotic manipulation. Moreover, we implement a global-to-local scanning strategy, which enables robots to accurately recognise and retrieve fruits in field environments with two consumer-level RGB-D cameras. We also evaluate the accuracy and robustness of proposed network comprehensively in experiments. The experimental results show that A3N achieves 0.873 on instance segmentation accuracy, with an average computation time of 35 ms. The average accuracy of grasping estimation is 0.61 cm and 4.8$^{\circ}$ in centre and orientation, respectively. Overall, the robotic system that utilizes the global-to-local scanning and A3N, achieves success rate of harvesting ranging from 70\% - 85\% in field harvesting experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tlx发布了新的文献求助10
刚刚
今后应助清逸采纳,获得10
2秒前
所所应助weven采纳,获得10
2秒前
yyyysh发布了新的文献求助50
3秒前
清爽夜雪完成签到,获得积分10
3秒前
rrts完成签到,获得积分10
3秒前
傻瓜子完成签到,获得积分20
5秒前
7秒前
8秒前
含糊的大侠完成签到,获得积分10
8秒前
Tree完成签到 ,获得积分10
9秒前
10秒前
rrts发布了新的文献求助10
10秒前
11秒前
兴奋硬币发布了新的文献求助10
11秒前
Dong完成签到 ,获得积分10
12秒前
12秒前
复杂沛白发布了新的文献求助10
13秒前
随便发布了新的文献求助10
14秒前
李麟发布了新的文献求助10
15秒前
所所应助tlx采纳,获得150
17秒前
上官若男应助okk采纳,获得10
19秒前
港岛妹妹应助兴奋硬币采纳,获得10
20秒前
隐形曼青应助兴奋硬币采纳,获得30
20秒前
20秒前
21秒前
我一定要坚持下去完成签到,获得积分20
21秒前
彭于晏应助wan采纳,获得10
22秒前
科研通AI2S应助感动语蝶采纳,获得30
22秒前
pluto应助感动语蝶采纳,获得10
22秒前
科研通AI2S应助感动语蝶采纳,获得10
22秒前
科研通AI2S应助感动语蝶采纳,获得10
22秒前
Lucas应助感动语蝶采纳,获得10
22秒前
diu应助感动语蝶采纳,获得10
22秒前
Akim应助dungaway采纳,获得10
22秒前
乐乐应助zhan采纳,获得10
22秒前
clcl完成签到,获得积分10
22秒前
23秒前
A,w携念e行ོ完成签到,获得积分10
23秒前
丘比特应助忧郁的猕猴桃采纳,获得10
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243247
求助须知:如何正确求助?哪些是违规求助? 2887210
关于积分的说明 8247167
捐赠科研通 2555861
什么是DOI,文献DOI怎么找? 1383940
科研通“疑难数据库(出版商)”最低求助积分说明 649782
邀请新用户注册赠送积分活动 625662