已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Parallel Algorithms for Efficient Computation of High-Order Line Graphs of Hypergraphs

超图 成对比较 计算机科学 启发式 计算 理论计算机科学 算法 图形 数学 人工智能 离散数学 操作系统
作者
Tony Liu,Jesun Sahariar Firoz,Andrew Lumsdaine,Cliff Joslyn,Sinan G. Aksoy,Brenda Praggastis,Assefaw H. Gebremedhin
标识
DOI:10.1109/hipc53243.2021.00045
摘要

This paper considers structures of systems beyond dyadic (pairwise) interactions and investigates mathematical modeling of multi-way interactions and connections as hyper-graphs, where captured relationships among system entities are set-valued. To date, in most situations, entities in a hypergraph are considered connected if there is at least one common “neighbor”. However, minimal commonality sometimes discards the “strength” of connections and interactions among groups. To this end, considering the “width” of a connection, referred to as the s-overlap of neighbors, provides more meaningful insights into how closely the communities or entities interact with each other. In addition, s-overlap computation is the fundamental kernel to construct the line graph of a hypergraph, a low-order approximation of the hypergraph which can carry significant information about the original hypergraph. Subsequent stages of a data analytics pipeline then can apply highly tuned graph algorithms on the line graph to reveal important features. Given a hypergraph, computing the s-overlaps by exhaustively considering all pairwise entities can be computationally prohibitive. To tackle this challenge, we develop efficient algorithms to compute s-overlaps and the corresponding line graph of a hypergraph. We propose several heuristics to avoid execution of redundant work and improve performance of the s-overlap computation. Our parallel algorithm, combined with these heuristics, is orders of magnitude (more than 10x) faster than the naive algorithm in all cases and the SpGEMM algorithm with filtration in most cases (especially with large $s$ value).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ldq完成签到 ,获得积分10
1秒前
s可发布了新的文献求助10
1秒前
1秒前
优雅夕阳完成签到 ,获得积分10
2秒前
干破天完成签到 ,获得积分10
2秒前
VDC发布了新的文献求助10
4秒前
赵怡宁完成签到,获得积分10
6秒前
6秒前
dakache完成签到,获得积分10
6秒前
7秒前
fqx应助fangzhang采纳,获得10
8秒前
shinn发布了新的文献求助50
9秒前
Hello应助宇文思采纳,获得10
10秒前
11秒前
舒适的方盒完成签到 ,获得积分10
13秒前
16秒前
周宇飞完成签到 ,获得积分10
17秒前
19秒前
20秒前
haosu应助yyt采纳,获得20
22秒前
深情安青应助圣泽同学采纳,获得10
22秒前
zai发布了新的文献求助10
23秒前
FengYun完成签到 ,获得积分0
23秒前
宇文思发布了新的文献求助10
24秒前
小情绪完成签到 ,获得积分10
24秒前
sochiyuen发布了新的文献求助10
25秒前
xxx完成签到 ,获得积分10
29秒前
32秒前
爱学习的婷完成签到 ,获得积分10
33秒前
33秒前
momo完成签到,获得积分10
34秒前
LabRat完成签到 ,获得积分10
34秒前
36秒前
学渣本渣发布了新的文献求助10
37秒前
sochiyuen完成签到,获得积分10
37秒前
我爱学习完成签到 ,获得积分10
37秒前
VELPRO发布了新的文献求助10
37秒前
小谢同学完成签到 ,获得积分10
39秒前
40秒前
momo发布了新的文献求助10
40秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463529
求助须知:如何正确求助?哪些是违规求助? 3056862
关于积分的说明 9054565
捐赠科研通 2746863
什么是DOI,文献DOI怎么找? 1507063
科研通“疑难数据库(出版商)”最低求助积分说明 696327
邀请新用户注册赠送积分活动 695916