Detection and discrimination of disease and insect stress of tea plants using hyperspectral imaging combined with wavelet analysis

高光谱成像 叶蝉 小波 模式识别(心理学) 植物病害 人工智能 生物 园艺 植物 计算机科学 生物技术 半翅目
作者
Xiaohu Zhao,Jingcheng Zhang,Yanbo Huang,Yangyang Tian,Lin Yuan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:193: 106717-106717 被引量:49
标识
DOI:10.1016/j.compag.2022.106717
摘要

Compared with the traditional visual detection method, hyperspectral imaging enables efficient and non-destructive plant monitoring. Besides, it has great potential in plant phenotyping in response to disease and insect infections. However, most previous studies on hyperspectral imaging have focused on detecting a single disease, which can rarely discriminate between multiple co-occurring diseases and insects. In this study, three tea plant stresses with similar symptoms, including the tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda), anthracnose (Gloeosporium theae-sinesis Miyake), and sunburn (disease-like stress), were evaluated. A multi-step approach was proposed based on hyperspectral imaging and continuous wavelet analysis (CWA) to discriminate the plant stresses. The process entailed: (1) Feature extraction for detection and discrimination of tea plant stresses based on CWA; (2) Detecting abnormal areas on tea leaves via the k-means clustering and support vector machine algorithms; (3) Construction of a model for identification and discrimination of the three tea plant stresses via the random forest algorithm. The results showed that CWA could effectively identify spectral features for distinguishing the three stresses. The overall accuracy (OA) of the proposed approach reached 90.26%-90.69%, with anthracnose having the highest OA (94.12%-94.28%), followed by tea green leafhopper (93.99%-94.20%), while sunburn damage was the least (82.50%-83.91%). Therefore, hyperspectral imaging is effective for plant phenotyping after diseases and insect infections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
聂学雨发布了新的文献求助10
3秒前
壮观的之瑶完成签到,获得积分10
3秒前
3秒前
爆米花应助云_123采纳,获得10
5秒前
6秒前
7秒前
su应助一叶扁舟采纳,获得10
7秒前
8秒前
犹豫的书蝶完成签到,获得积分10
8秒前
8秒前
10秒前
nater3ver发布了新的文献求助10
10秒前
起风了发布了新的文献求助10
10秒前
lucfer完成签到 ,获得积分10
11秒前
令狐擎宇完成签到,获得积分10
12秒前
12秒前
zmy关注了科研通微信公众号
12秒前
14秒前
魔幻山芙发布了新的文献求助10
14秒前
16秒前
暴躁的黎云完成签到,获得积分10
16秒前
Adler应助tamh22采纳,获得10
18秒前
大力沛萍发布了新的文献求助10
19秒前
科目三应助王大禹采纳,获得20
19秒前
20秒前
21秒前
科研通AI2S应助nater3ver采纳,获得10
22秒前
须臾发布了新的文献求助10
22秒前
24秒前
sinan发布了新的文献求助10
25秒前
大力沛萍完成签到,获得积分10
26秒前
mit完成签到 ,获得积分10
26秒前
加速度发布了新的文献求助10
27秒前
27秒前
mads完成签到 ,获得积分10
28秒前
无情的瑾瑜完成签到 ,获得积分10
28秒前
不配.应助皮皮采纳,获得30
29秒前
刘xiansheng完成签到,获得积分10
30秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135007
求助须知:如何正确求助?哪些是违规求助? 2785964
关于积分的说明 7774560
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298183
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825