清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

PLS-DA and Vis-NIR spectroscopy based discrimination of abdominal tissues of female rabbits

主成分分析 偏最小二乘回归 光谱学 近红外光谱 解剖 化学 数学 生物 人工智能 计算机科学 统计 物理 量子力学 神经科学
作者
Hao Yuan,Cailing Liu,Hongying Wang,Liangju Wang,Lei Dai
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:271: 120887-120887 被引量:18
标识
DOI:10.1016/j.saa.2022.120887
摘要

Using Vis-NIR spectroscopy to distinguish gestational sac from other abdominal tissues is the key to diagnosing female rabbits' pregnancy by optical means. This study aims to demonstrate the gestational sac and other abdominal tissues (hair, skin, breast, muscle, cecum, small intestine) of rabbits can be identified using Vis-NIR spectroscopy in vitro. These tissues' raw NIR spectra were recorded in the Vis-NIR range (490-940 nm) with interactive mode. The raw spectra of tissues were analyzed by the principal component analysis (PCA), and were pre-processed using five spectral pre-processing techniques (moving average filter (MF), De-trending (DT), first-order derivative (D1), Multivariate scattering correction (MSC), and standard normal variate (SNV)) to reduce signal noises. The raw and pre-processed spectra were classified using partial least squares discrimination analysis (PLS-DA). Two-way and multi-way PLS-DA model was conducted to understand the classification of each tissue from the gestational sac and to understand the classification of all tissues from the gestational sac, respectively. SNV-PLS-DA model had the best performance, and its multi-way accuracy (Ac), determination coefficients (R2), and Q2 were 0.89, 0.91, 0.77, respectively. The successive projection algorithm (SPA) and competitive adaptive reweighted sampling (CARS) were used to select characteristic wavelengths (CWs). The SNV-SPA-PLS-DA model with eighteen CWs was better than the SNV-CARS-PLS-DA model. The results showed that Vis-NIR spectroscopy technology combined with PLS-DA could discriminate the gestational sac from the abdominal tissues. This study may help develop an optical diagnosis system for pregnant rabbits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
5秒前
拼搏问薇完成签到 ,获得积分10
13秒前
14秒前
21秒前
36秒前
supermaltose完成签到,获得积分10
41秒前
41秒前
yyds完成签到,获得积分0
41秒前
53秒前
56秒前
科研狗的春天完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
輕瘋发布了新的文献求助10
1分钟前
輕瘋完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
葛力完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ZTiamT发布了新的文献求助200
2分钟前
2分钟前
3分钟前
3分钟前
ZTiamT发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
FashionBoy应助忧郁菲鹰采纳,获得30
3分钟前
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732432
求助须知:如何正确求助?哪些是违规求助? 5339270
关于积分的说明 15322228
捐赠科研通 4878002
什么是DOI,文献DOI怎么找? 2620807
邀请新用户注册赠送积分活动 1570003
关于科研通互助平台的介绍 1526689