PLS-DA and Vis-NIR spectroscopy based discrimination of abdominal tissues of female rabbits

主成分分析 偏最小二乘回归 光谱学 近红外光谱 解剖 化学 数学 生物 人工智能 计算机科学 统计 物理 量子力学 神经科学
作者
Hao Yuan,Cailing Liu,Hongying Wang,Liangju Wang,Lei Dai
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:271: 120887-120887 被引量:18
标识
DOI:10.1016/j.saa.2022.120887
摘要

Using Vis-NIR spectroscopy to distinguish gestational sac from other abdominal tissues is the key to diagnosing female rabbits' pregnancy by optical means. This study aims to demonstrate the gestational sac and other abdominal tissues (hair, skin, breast, muscle, cecum, small intestine) of rabbits can be identified using Vis-NIR spectroscopy in vitro. These tissues' raw NIR spectra were recorded in the Vis-NIR range (490-940 nm) with interactive mode. The raw spectra of tissues were analyzed by the principal component analysis (PCA), and were pre-processed using five spectral pre-processing techniques (moving average filter (MF), De-trending (DT), first-order derivative (D1), Multivariate scattering correction (MSC), and standard normal variate (SNV)) to reduce signal noises. The raw and pre-processed spectra were classified using partial least squares discrimination analysis (PLS-DA). Two-way and multi-way PLS-DA model was conducted to understand the classification of each tissue from the gestational sac and to understand the classification of all tissues from the gestational sac, respectively. SNV-PLS-DA model had the best performance, and its multi-way accuracy (Ac), determination coefficients (R2), and Q2 were 0.89, 0.91, 0.77, respectively. The successive projection algorithm (SPA) and competitive adaptive reweighted sampling (CARS) were used to select characteristic wavelengths (CWs). The SNV-SPA-PLS-DA model with eighteen CWs was better than the SNV-CARS-PLS-DA model. The results showed that Vis-NIR spectroscopy technology combined with PLS-DA could discriminate the gestational sac from the abdominal tissues. This study may help develop an optical diagnosis system for pregnant rabbits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZ的脑子完成签到,获得积分10
刚刚
上官若男应助鲸鱼采纳,获得10
2秒前
思源应助momucy采纳,获得10
2秒前
3秒前
卜应完成签到,获得积分10
3秒前
白菜也挺贵完成签到,获得积分20
3秒前
4秒前
fqx完成签到,获得积分20
4秒前
4秒前
xiaohe完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
科目三应助宁人采纳,获得10
7秒前
fpy完成签到,获得积分10
7秒前
7秒前
孟筱发布了新的文献求助10
8秒前
一天完成签到,获得积分10
8秒前
刘亦菲完成签到 ,获得积分10
8秒前
Lynn完成签到,获得积分10
9秒前
浮游应助momucy采纳,获得10
9秒前
zj完成签到,获得积分10
9秒前
潮湿梦完成签到,获得积分10
9秒前
9秒前
经纲完成签到 ,获得积分0
10秒前
陈俊瑶完成签到,获得积分10
10秒前
上官若男应助哲别采纳,获得10
11秒前
24豆完成签到,获得积分10
11秒前
毅诚菌发布了新的文献求助30
11秒前
12秒前
古灵精怪完成签到 ,获得积分10
12秒前
鸣笛应助jyyg采纳,获得10
12秒前
科研通AI6应助青花采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
完美世界应助称心的乘云采纳,获得10
13秒前
14秒前
24豆发布了新的文献求助10
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513