PLS-DA and Vis-NIR spectroscopy based discrimination of abdominal tissues of female rabbits

主成分分析 偏最小二乘回归 光谱学 近红外光谱 解剖 化学 数学 生物 人工智能 计算机科学 统计 物理 量子力学 神经科学
作者
Hao Yuan,Cailing Liu,Hongying Wang,Liangju Wang,Lei Dai
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:271: 120887-120887 被引量:18
标识
DOI:10.1016/j.saa.2022.120887
摘要

Using Vis-NIR spectroscopy to distinguish gestational sac from other abdominal tissues is the key to diagnosing female rabbits' pregnancy by optical means. This study aims to demonstrate the gestational sac and other abdominal tissues (hair, skin, breast, muscle, cecum, small intestine) of rabbits can be identified using Vis-NIR spectroscopy in vitro. These tissues' raw NIR spectra were recorded in the Vis-NIR range (490-940 nm) with interactive mode. The raw spectra of tissues were analyzed by the principal component analysis (PCA), and were pre-processed using five spectral pre-processing techniques (moving average filter (MF), De-trending (DT), first-order derivative (D1), Multivariate scattering correction (MSC), and standard normal variate (SNV)) to reduce signal noises. The raw and pre-processed spectra were classified using partial least squares discrimination analysis (PLS-DA). Two-way and multi-way PLS-DA model was conducted to understand the classification of each tissue from the gestational sac and to understand the classification of all tissues from the gestational sac, respectively. SNV-PLS-DA model had the best performance, and its multi-way accuracy (Ac), determination coefficients (R2), and Q2 were 0.89, 0.91, 0.77, respectively. The successive projection algorithm (SPA) and competitive adaptive reweighted sampling (CARS) were used to select characteristic wavelengths (CWs). The SNV-SPA-PLS-DA model with eighteen CWs was better than the SNV-CARS-PLS-DA model. The results showed that Vis-NIR spectroscopy technology combined with PLS-DA could discriminate the gestational sac from the abdominal tissues. This study may help develop an optical diagnosis system for pregnant rabbits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
科研123发布了新的文献求助10
2秒前
Rainbow发布了新的文献求助10
2秒前
2秒前
米花完成签到 ,获得积分10
2秒前
凝子老师发布了新的文献求助10
3秒前
flying蝈蝈完成签到,获得积分10
3秒前
Rein完成签到,获得积分10
3秒前
3秒前
Zxc发布了新的文献求助10
3秒前
nininidoc完成签到,获得积分10
4秒前
123号发布了新的文献求助10
6秒前
Chen发布了新的文献求助10
7秒前
汉堡包应助caoyy采纳,获得10
7秒前
阳阳发布了新的文献求助10
7秒前
田所浩二完成签到 ,获得积分10
7秒前
7秒前
华仔应助奶糖采纳,获得30
8秒前
动力小滋完成签到,获得积分10
8秒前
ding应助瑶一瑶采纳,获得10
11秒前
fmwang完成签到,获得积分10
12秒前
万能图书馆应助Zxc采纳,获得10
12秒前
Rainbow完成签到,获得积分10
12秒前
小小郭完成签到 ,获得积分10
12秒前
14秒前
Orange应助务实的犀牛采纳,获得10
14秒前
追寻飞风完成签到,获得积分10
14秒前
wenli完成签到,获得积分10
15秒前
15秒前
16秒前
Schmoo完成签到,获得积分10
17秒前
19秒前
圆圆的脑袋应助涛浪采纳,获得10
20秒前
隐形曼青应助皮皮桂采纳,获得10
21秒前
凝子老师完成签到,获得积分10
21秒前
奶糖发布了新的文献求助30
21秒前
TORCH完成签到 ,获得积分10
23秒前
李健的小迷弟应助lin采纳,获得10
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849