已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploring Bidirectional Performance of Hotel Attributes through Online Reviews Based on Sentiment Analysis and Kano-IPA Model

情绪分析 计算机科学 款待 酒店业 服务(商务) 营销 业务 旅游 人工智能 地理 考古
作者
Yanyan Chen,Yumei Zhong,Sumin Yu,Yan Xiao,Sining Chen
出处
期刊:Applied sciences [MDPI AG]
卷期号:12 (2): 692-692 被引量:31
标识
DOI:10.3390/app12020692
摘要

As people increasingly make hotel booking decisions relying on online reviews, how to effectively improve customer ratings has become a major point for hotel managers. Online reviews serve as a promising data source to enhance service attributes in order to improve online bookings. This paper employs online customer ratings and textual reviews to explore the bidirectional performance (good performance in positive reviews and poor performance in negative reviews) of hotel attributes in terms of four hotel star ratings. Sentiment analysis and a combination of the Kano model and importance-performance analysis (IPA) are applied. Feature extraction and sentiment analysis techniques are used to analyze the bidirectional performance of hotel attributes in terms of four hotel star ratings from 1,090,341 online reviews of hotels in London collected from TripAdvisor.com (accessed on 4 January 2022). In particular, a new sentiment lexicon for hospitality domain is built from numerous online reviews using the PolarityRank algorithm to convert textual reviews into sentiment scores. The Kano-IPA model is applied to explain customers’ rating behaviors and prioritize attributes for improvement. The results provide determinants of high/low customer ratings to different star hotels and suggest that hotel attributes contributing to high/low customer ratings vary across hotel star ratings. In addition, this paper analyzed the Kano categories and priority rankings of six hotel attributes for each star rating of hotels to formulate improvement strategies. Theoretical and practical implications of these results are discussed in the end.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
狂野雅彤发布了新的文献求助10
2秒前
真不错完成签到,获得积分10
5秒前
思源应助DD采纳,获得10
7秒前
8秒前
8秒前
天天快乐应助好天气采纳,获得10
11秒前
15秒前
CipherSage应助科研通管家采纳,获得10
16秒前
无极微光应助科研通管家采纳,获得20
16秒前
归尘应助科研通管家采纳,获得30
16秒前
归尘应助科研通管家采纳,获得30
16秒前
归尘应助科研通管家采纳,获得30
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
xxfsx应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
16秒前
归尘应助科研通管家采纳,获得30
16秒前
17秒前
淳于惜雪完成签到 ,获得积分10
17秒前
17秒前
达布妞发布了新的文献求助10
18秒前
-17完成签到 ,获得积分10
18秒前
19秒前
小马甲应助直率孤风采纳,获得10
20秒前
领导范儿应助Rzozsye采纳,获得10
22秒前
chen完成签到,获得积分10
23秒前
ifly发布了新的文献求助10
23秒前
24秒前
CodeCraft应助agf采纳,获得10
25秒前
领导范儿应助ZBQ采纳,获得10
25秒前
充电宝应助火鸡味锅巴采纳,获得10
27秒前
April完成签到,获得积分10
27秒前
君兰发布了新的文献求助10
28秒前
在水一方应助misaka采纳,获得10
28秒前
研研研究不出完成签到 ,获得积分10
29秒前
Bin发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488216
求助须知:如何正确求助?哪些是违规求助? 4587188
关于积分的说明 14412948
捐赠科研通 4518460
什么是DOI,文献DOI怎么找? 2475790
邀请新用户注册赠送积分活动 1461373
关于科研通互助平台的介绍 1434279