Exploring Bidirectional Performance of Hotel Attributes through Online Reviews Based on Sentiment Analysis and Kano-IPA Model

情绪分析 计算机科学 款待 酒店业 服务(商务) 营销 业务 旅游 人工智能 地理 考古
作者
Yanyan Chen,Yumei Zhong,Sumin Yu,Yan Xiao,Sining Chen
出处
期刊:Applied sciences [MDPI AG]
卷期号:12 (2): 692-692 被引量:31
标识
DOI:10.3390/app12020692
摘要

As people increasingly make hotel booking decisions relying on online reviews, how to effectively improve customer ratings has become a major point for hotel managers. Online reviews serve as a promising data source to enhance service attributes in order to improve online bookings. This paper employs online customer ratings and textual reviews to explore the bidirectional performance (good performance in positive reviews and poor performance in negative reviews) of hotel attributes in terms of four hotel star ratings. Sentiment analysis and a combination of the Kano model and importance-performance analysis (IPA) are applied. Feature extraction and sentiment analysis techniques are used to analyze the bidirectional performance of hotel attributes in terms of four hotel star ratings from 1,090,341 online reviews of hotels in London collected from TripAdvisor.com (accessed on 4 January 2022). In particular, a new sentiment lexicon for hospitality domain is built from numerous online reviews using the PolarityRank algorithm to convert textual reviews into sentiment scores. The Kano-IPA model is applied to explain customers’ rating behaviors and prioritize attributes for improvement. The results provide determinants of high/low customer ratings to different star hotels and suggest that hotel attributes contributing to high/low customer ratings vary across hotel star ratings. In addition, this paper analyzed the Kano categories and priority rankings of six hotel attributes for each star rating of hotels to formulate improvement strategies. Theoretical and practical implications of these results are discussed in the end.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HY发布了新的文献求助10
2秒前
招财小茗发布了新的文献求助10
2秒前
搜集达人应助若水三千采纳,获得10
4秒前
称心曼安完成签到 ,获得积分10
5秒前
5秒前
5秒前
毛豆应助头孢克肟采纳,获得10
5秒前
12发布了新的文献求助10
6秒前
6秒前
7秒前
大猫发布了新的文献求助10
8秒前
zhun发布了新的文献求助10
9秒前
kai发布了新的文献求助10
10秒前
awu发布了新的文献求助10
10秒前
12秒前
踏实的道消完成签到 ,获得积分10
13秒前
14秒前
14秒前
15秒前
zhun完成签到,获得积分10
16秒前
雪花点完成签到,获得积分10
16秒前
Akim应助小张采纳,获得10
18秒前
18秒前
18秒前
若水三千发布了新的文献求助10
19秒前
19秒前
楚狂接舆完成签到,获得积分10
20秒前
HY完成签到,获得积分10
21秒前
Zz发布了新的文献求助20
21秒前
林夏发布了新的文献求助10
22秒前
JamesPei应助gej采纳,获得10
23秒前
24秒前
ding应助JHcHuN采纳,获得10
24秒前
毛豆应助JHcHuN采纳,获得10
24秒前
ding应助JHcHuN采纳,获得10
24秒前
慕青应助JHcHuN采纳,获得10
24秒前
shijin135完成签到,获得积分10
24秒前
cocolu应助JHcHuN采纳,获得10
24秒前
无花果应助JHcHuN采纳,获得10
24秒前
所所应助JHcHuN采纳,获得10
24秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Injection and Compression Molding Fundamentals 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422049
求助须知:如何正确求助?哪些是违规求助? 3022508
关于积分的说明 8901068
捐赠科研通 2709885
什么是DOI,文献DOI怎么找? 1486173
科研通“疑难数据库(出版商)”最低求助积分说明 686963
邀请新用户注册赠送积分活动 682179