A predictive and adaptive control strategy to optimize the management of integrated energy systems in buildings

热能储存 储能 计算机科学 控制器(灌溉) 地铁列车时刻表 模型预测控制 能源管理 高效能源利用 能源消耗 控制(管理) 基线(sea) 可靠性工程 汽车工程 控制工程 能量(信号处理) 工程类 功率(物理) 电气工程 人工智能 统计 数学 生态学 物理 海洋学 量子力学 地质学 农学 生物 操作系统
作者
Silvio Brandi,A. Gallo,Alfonso Capozzoli
出处
期刊:Energy Reports [Elsevier]
卷期号:8: 1550-1567 被引量:33
标识
DOI:10.1016/j.egyr.2021.12.058
摘要

The management of integrated energy systems in buildings is a challenging task that classical control approaches usually fail to address. The present paper analyzes the effect of the implementation of a reinforcement learning-based control strategy in an office building characterized by integrated energy systems with on-site electricity generation and storage technologies. The objective of the proposed controller is to minimize the operational cost to meet the cooling demand exploiting thermal energy storage and battery system considering a time-of-use electricity price schedule and local PV production. Two control solutions, a Soft-Actor-Critic agent coupled with a rule-based controller, and a fully rule-based control strategy, used as a baseline, are tested and compared considering various configurations of battery energy storage system capacities, and thermal energy storage sizes. Results show that the proposed control strategy leads to a reduction of operational energy costs respect to the fully rule-based control ranging from 39.5% and 84.3% among different configurations. Moreover the advanced control strategy improves the on-site PV utilization leading to an average increasing of self-sufficiency and self-consumption of 40% among different scenarios. The baseline control strategy results more sensitive to the size of storage whereas the proposed control achieves high savings also when smaller capacities of battery energy storage systems and sizes of thermal energy storage are implemented. The outcomes of the work prove the impact of implementation of advanced control as a way to optimize energy costs with a comprehensive view of the whole integrated energy system considering both thermal and electrical energy storage operation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
XXM发布了新的文献求助10
1秒前
bigsaopig完成签到,获得积分10
1秒前
CipherSage应助Iva采纳,获得10
1秒前
周周发布了新的文献求助10
2秒前
烟花应助tjy采纳,获得10
2秒前
2秒前
烟花应助辛苦科研人采纳,获得10
3秒前
腼腆钵钵鸡完成签到 ,获得积分10
3秒前
今后应助标致的耳机采纳,获得10
3秒前
3秒前
三三发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
庾幻儿完成签到,获得积分10
6秒前
鲸鱼完成签到,获得积分10
6秒前
6秒前
靓丽藏花完成签到,获得积分10
6秒前
6秒前
tjy完成签到,获得积分20
7秒前
7秒前
万能图书馆应助普照大地采纳,获得100
7秒前
英姑应助lian采纳,获得10
7秒前
7秒前
nature发布了新的文献求助10
8秒前
heyong发布了新的文献求助10
8秒前
1111111完成签到,获得积分20
8秒前
wangji发布了新的文献求助10
9秒前
9秒前
最棒哒发布了新的文献求助10
9秒前
10秒前
Aurora完成签到 ,获得积分10
10秒前
安详的代容完成签到,获得积分20
11秒前
12秒前
Ava应助周周采纳,获得10
12秒前
12秒前
根深者叶茂完成签到,获得积分10
12秒前
momomo发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919