A predictive and adaptive control strategy to optimize the management of integrated energy systems in buildings

热能储存 储能 计算机科学 控制器(灌溉) 地铁列车时刻表 模型预测控制 能源管理 高效能源利用 能源消耗 控制(管理) 基线(sea) 可靠性工程 汽车工程 控制工程 能量(信号处理) 工程类 功率(物理) 电气工程 人工智能 物理 地质学 操作系统 海洋学 统计 生物 量子力学 数学 生态学 农学
作者
Silvio Brandi,A. Gallo,Alfonso Capozzoli
出处
期刊:Energy Reports [Elsevier BV]
卷期号:8: 1550-1567 被引量:33
标识
DOI:10.1016/j.egyr.2021.12.058
摘要

The management of integrated energy systems in buildings is a challenging task that classical control approaches usually fail to address. The present paper analyzes the effect of the implementation of a reinforcement learning-based control strategy in an office building characterized by integrated energy systems with on-site electricity generation and storage technologies. The objective of the proposed controller is to minimize the operational cost to meet the cooling demand exploiting thermal energy storage and battery system considering a time-of-use electricity price schedule and local PV production. Two control solutions, a Soft-Actor-Critic agent coupled with a rule-based controller, and a fully rule-based control strategy, used as a baseline, are tested and compared considering various configurations of battery energy storage system capacities, and thermal energy storage sizes. Results show that the proposed control strategy leads to a reduction of operational energy costs respect to the fully rule-based control ranging from 39.5% and 84.3% among different configurations. Moreover the advanced control strategy improves the on-site PV utilization leading to an average increasing of self-sufficiency and self-consumption of 40% among different scenarios. The baseline control strategy results more sensitive to the size of storage whereas the proposed control achieves high savings also when smaller capacities of battery energy storage systems and sizes of thermal energy storage are implemented. The outcomes of the work prove the impact of implementation of advanced control as a way to optimize energy costs with a comprehensive view of the whole integrated energy system considering both thermal and electrical energy storage operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
glaze完成签到 ,获得积分10
1秒前
咕噜咕噜发布了新的文献求助10
2秒前
你的风筝应助aaaaaa采纳,获得10
2秒前
李健的小迷弟应助aaaaaa采纳,获得10
2秒前
淡然冬灵发布了新的文献求助10
2秒前
墨菲特发布了新的文献求助10
2秒前
茴香完成签到,获得积分10
2秒前
2秒前
刘十三完成签到,获得积分10
3秒前
xlong完成签到,获得积分10
4秒前
研友_VZG7GZ应助Eoch采纳,获得10
4秒前
Mister.WangK完成签到,获得积分10
4秒前
5秒前
思齐发布了新的文献求助10
5秒前
Eliza_666完成签到,获得积分10
6秒前
6秒前
失眠的血茗完成签到,获得积分10
6秒前
高高完成签到,获得积分10
6秒前
7秒前
专注的飞瑶完成签到 ,获得积分10
7秒前
MOJITO发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
jack发布了新的文献求助10
11秒前
王相博发布了新的文献求助10
11秒前
一叶知秋完成签到,获得积分20
12秒前
12秒前
小七发布了新的文献求助10
13秒前
qsh完成签到 ,获得积分10
13秒前
赵帅完成签到,获得积分10
14秒前
Jasper应助LIU采纳,获得10
14秒前
sunshine完成签到 ,获得积分10
14秒前
16秒前
果果完成签到,获得积分10
16秒前
ff完成签到,获得积分10
17秒前
马里奥爱科研完成签到,获得积分10
17秒前
我欲成粉绿完成签到,获得积分10
17秒前
18秒前
Orange应助lilysmile001采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970062
求助须知:如何正确求助?哪些是违规求助? 3514782
关于积分的说明 11175968
捐赠科研通 3250119
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804951