A predictive and adaptive control strategy to optimize the management of integrated energy systems in buildings

热能储存 储能 计算机科学 控制器(灌溉) 地铁列车时刻表 模型预测控制 能源管理 高效能源利用 能源消耗 控制(管理) 基线(sea) 可靠性工程 汽车工程 控制工程 能量(信号处理) 工程类 功率(物理) 电气工程 人工智能 物理 地质学 操作系统 海洋学 统计 生物 量子力学 数学 生态学 农学
作者
Silvio Brandi,A. Gallo,Alfonso Capozzoli
出处
期刊:Energy Reports [Elsevier]
卷期号:8: 1550-1567 被引量:33
标识
DOI:10.1016/j.egyr.2021.12.058
摘要

The management of integrated energy systems in buildings is a challenging task that classical control approaches usually fail to address. The present paper analyzes the effect of the implementation of a reinforcement learning-based control strategy in an office building characterized by integrated energy systems with on-site electricity generation and storage technologies. The objective of the proposed controller is to minimize the operational cost to meet the cooling demand exploiting thermal energy storage and battery system considering a time-of-use electricity price schedule and local PV production. Two control solutions, a Soft-Actor-Critic agent coupled with a rule-based controller, and a fully rule-based control strategy, used as a baseline, are tested and compared considering various configurations of battery energy storage system capacities, and thermal energy storage sizes. Results show that the proposed control strategy leads to a reduction of operational energy costs respect to the fully rule-based control ranging from 39.5% and 84.3% among different configurations. Moreover the advanced control strategy improves the on-site PV utilization leading to an average increasing of self-sufficiency and self-consumption of 40% among different scenarios. The baseline control strategy results more sensitive to the size of storage whereas the proposed control achieves high savings also when smaller capacities of battery energy storage systems and sizes of thermal energy storage are implemented. The outcomes of the work prove the impact of implementation of advanced control as a way to optimize energy costs with a comprehensive view of the whole integrated energy system considering both thermal and electrical energy storage operation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
西西发布了新的文献求助10
1秒前
悠悠悠幽谷完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
2秒前
顾矜应助Singularity采纳,获得10
2秒前
susan完成签到,获得积分10
2秒前
abocide完成签到,获得积分10
3秒前
郭玉强完成签到,获得积分10
3秒前
死侍完成签到 ,获得积分10
3秒前
斯文败类应助呼叫554采纳,获得10
3秒前
4秒前
hyx完成签到,获得积分10
5秒前
vicky发布了新的文献求助10
5秒前
郭梦娇发布了新的文献求助10
5秒前
七舟发布了新的文献求助10
6秒前
大个应助乌拉拉采纳,获得10
7秒前
兰花二狗他爹完成签到,获得积分10
7秒前
cuicui完成签到,获得积分20
7秒前
jinkk完成签到,获得积分10
8秒前
东方元语应助无极微光采纳,获得20
8秒前
9秒前
9秒前
科研通AI2S应助fu采纳,获得30
9秒前
永吉发布了新的文献求助10
10秒前
wxd发布了新的文献求助30
10秒前
CUI666完成签到 ,获得积分10
10秒前
10秒前
1448361841完成签到 ,获得积分10
11秒前
12秒前
12秒前
树池发布了新的文献求助10
14秒前
14秒前
思源应助心灵美的大山采纳,获得10
14秒前
CipherSage应助悠悠悠幽谷采纳,获得10
14秒前
weiwei完成签到,获得积分10
14秒前
1448361841关注了科研通微信公众号
15秒前
dusk完成签到 ,获得积分10
16秒前
满意紫丝完成签到,获得积分10
17秒前
17秒前
无限丹珍发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684323
求助须知:如何正确求助?哪些是违规求助? 5035995
关于积分的说明 15183907
捐赠科研通 4843598
什么是DOI,文献DOI怎么找? 2596736
邀请新用户注册赠送积分活动 1549447
关于科研通互助平台的介绍 1507972