A predictive and adaptive control strategy to optimize the management of integrated energy systems in buildings

热能储存 储能 计算机科学 控制器(灌溉) 地铁列车时刻表 模型预测控制 能源管理 高效能源利用 能源消耗 控制(管理) 基线(sea) 可靠性工程 汽车工程 控制工程 能量(信号处理) 工程类 功率(物理) 电气工程 人工智能 统计 数学 生态学 物理 海洋学 量子力学 地质学 农学 生物 操作系统
作者
Silvio Brandi,A. Gallo,Alfonso Capozzoli
出处
期刊:Energy Reports [Elsevier]
卷期号:8: 1550-1567 被引量:33
标识
DOI:10.1016/j.egyr.2021.12.058
摘要

The management of integrated energy systems in buildings is a challenging task that classical control approaches usually fail to address. The present paper analyzes the effect of the implementation of a reinforcement learning-based control strategy in an office building characterized by integrated energy systems with on-site electricity generation and storage technologies. The objective of the proposed controller is to minimize the operational cost to meet the cooling demand exploiting thermal energy storage and battery system considering a time-of-use electricity price schedule and local PV production. Two control solutions, a Soft-Actor-Critic agent coupled with a rule-based controller, and a fully rule-based control strategy, used as a baseline, are tested and compared considering various configurations of battery energy storage system capacities, and thermal energy storage sizes. Results show that the proposed control strategy leads to a reduction of operational energy costs respect to the fully rule-based control ranging from 39.5% and 84.3% among different configurations. Moreover the advanced control strategy improves the on-site PV utilization leading to an average increasing of self-sufficiency and self-consumption of 40% among different scenarios. The baseline control strategy results more sensitive to the size of storage whereas the proposed control achieves high savings also when smaller capacities of battery energy storage systems and sizes of thermal energy storage are implemented. The outcomes of the work prove the impact of implementation of advanced control as a way to optimize energy costs with a comprehensive view of the whole integrated energy system considering both thermal and electrical energy storage operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
树树发布了新的文献求助10
1秒前
一点发布了新的文献求助10
1秒前
科研通AI5应助时雨濛采纳,获得10
3秒前
Ava应助chj采纳,获得10
3秒前
疯狂的语兰完成签到,获得积分10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
MchemG应助andrele采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
keke发布了新的文献求助10
5秒前
Ava应助自信的冬日采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
黑囡应助科研通管家采纳,获得10
5秒前
NexusExplorer应助yy采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
hucchongzi应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
Lucas应助无端采纳,获得10
6秒前
6秒前
AlinaLee应助wks666666采纳,获得10
7秒前
368DFS发布了新的文献求助20
7秒前
淡定的半雪完成签到,获得积分10
7秒前
AE86完成签到,获得积分20
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560897
求助须知:如何正确求助?哪些是违规求助? 3134711
关于积分的说明 9409189
捐赠科研通 2834950
什么是DOI,文献DOI怎么找? 1558310
邀请新用户注册赠送积分活动 728082
科研通“疑难数据库(出版商)”最低求助积分说明 716686