A predictive and adaptive control strategy to optimize the management of integrated energy systems in buildings

热能储存 储能 计算机科学 控制器(灌溉) 地铁列车时刻表 模型预测控制 能源管理 高效能源利用 能源消耗 控制(管理) 基线(sea) 可靠性工程 汽车工程 控制工程 能量(信号处理) 工程类 功率(物理) 电气工程 人工智能 物理 地质学 操作系统 海洋学 统计 生物 量子力学 数学 生态学 农学
作者
Silvio Brandi,A. Gallo,Alfonso Capozzoli
出处
期刊:Energy Reports [Elsevier]
卷期号:8: 1550-1567 被引量:33
标识
DOI:10.1016/j.egyr.2021.12.058
摘要

The management of integrated energy systems in buildings is a challenging task that classical control approaches usually fail to address. The present paper analyzes the effect of the implementation of a reinforcement learning-based control strategy in an office building characterized by integrated energy systems with on-site electricity generation and storage technologies. The objective of the proposed controller is to minimize the operational cost to meet the cooling demand exploiting thermal energy storage and battery system considering a time-of-use electricity price schedule and local PV production. Two control solutions, a Soft-Actor-Critic agent coupled with a rule-based controller, and a fully rule-based control strategy, used as a baseline, are tested and compared considering various configurations of battery energy storage system capacities, and thermal energy storage sizes. Results show that the proposed control strategy leads to a reduction of operational energy costs respect to the fully rule-based control ranging from 39.5% and 84.3% among different configurations. Moreover the advanced control strategy improves the on-site PV utilization leading to an average increasing of self-sufficiency and self-consumption of 40% among different scenarios. The baseline control strategy results more sensitive to the size of storage whereas the proposed control achieves high savings also when smaller capacities of battery energy storage systems and sizes of thermal energy storage are implemented. The outcomes of the work prove the impact of implementation of advanced control as a way to optimize energy costs with a comprehensive view of the whole integrated energy system considering both thermal and electrical energy storage operation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zx_1993应助wackykao采纳,获得10
1秒前
2秒前
2秒前
2秒前
tooty发布了新的文献求助10
2秒前
52huihui关注了科研通微信公众号
3秒前
3秒前
4秒前
nito发布了新的文献求助10
4秒前
xinxin发布了新的文献求助10
5秒前
共享精神应助北山采纳,获得10
5秒前
侠客完成签到,获得积分10
5秒前
小小月发布了新的文献求助10
5秒前
Akim应助曹梦龙采纳,获得10
6秒前
zheng发布了新的文献求助10
6秒前
凝望发布了新的文献求助10
6秒前
6秒前
赘婿应助泌尿科小医生采纳,获得10
8秒前
刘一一发布了新的文献求助10
8秒前
8秒前
8秒前
xiaolei001应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得50
8秒前
giggle应助科研通管家采纳,获得10
8秒前
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
热心树叶应助科研通管家采纳,获得30
9秒前
MM应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175