已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery

电池(电) 可靠性(半导体) 计算机科学 锂离子电池 颗粒过滤器 均方误差 可靠性工程 卡尔曼滤波器 工程类 人工智能 功率(物理) 统计 数学 物理 量子力学
作者
Lisen Yan,Jun Peng,Dianzhu Gao,Yue Wu,Yongjie Liu,Heng Li,Weirong Liu,Zhiwu Huang
出处
期刊:Energy [Elsevier]
卷期号:243: 123038-123038 被引量:51
标识
DOI:10.1016/j.energy.2021.123038
摘要

Lithium-ion batteries have been employed extensively in many important applications in the electronics industry. For safety and reliability, it is extremely critical to get an accurate and early-stage remaining useful life prognostic of lithium-ion batteries. However, battery lifetime predictions are challenging due to the nonlinear battery degradation and the operational diversity among batteries. To increase the prediction accuracy, this paper proposes a hybrid framework combining the model-based method and data-driven method. In this framework, after estimating the battery capacity using online operating data, battery lifetime is predicted by the model-based empirical model as well as the data-driven support vector regression model. For the empirical model, its adaptability is improved by updating the parameters dynamically with particle filters. For the support vector regression model, its performance is optimized by an artificial bee colony algorithm. Finally, a fusion method with cascaded structure is proposed to integrate predictions from these two models, which boosts the prediction accuracy by iteratively exerting two concatenated Kalman filters. The generality and effectiveness of the proposed method are verified on battery data sets provided by NASA and our testing bench, respectively. The experimental results illustrate that the proposed method can improve the prediction accuracy of battery remaining lifetime, especially at the early stage. RMSE and MAE of the proposed hybrid framework are within 4 and 3.5. Compared with two existed hybrid methods, RMSE of prediction can be reduced by at least 7.6%. A reduction of not less than 5.9% in MAE of prediction is achieved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助wwwww采纳,获得10
刚刚
刚刚
Lucas应助舒适的秋尽采纳,获得10
1秒前
2秒前
BH6小行星发布了新的文献求助10
2秒前
皮皮虾发布了新的文献求助10
2秒前
CFJ完成签到,获得积分10
5秒前
尔白完成签到 ,获得积分10
5秒前
已有琦琦勿扰完成签到 ,获得积分10
6秒前
nn发布了新的文献求助10
6秒前
lotus发布了新的文献求助10
7秒前
沉静的万天完成签到 ,获得积分10
7秒前
8秒前
CC发布了新的文献求助10
9秒前
9秒前
10秒前
SciGPT应助jjdeng采纳,获得10
12秒前
科研通AI6.1应助孙靖博采纳,获得10
12秒前
领导范儿应助孙靖博采纳,获得10
12秒前
小鸡毛发布了新的文献求助10
16秒前
小二郎应助lx840518采纳,获得10
18秒前
18秒前
21秒前
Ava应助小琴爱学习采纳,获得10
22秒前
24秒前
阳光的青荷完成签到,获得积分10
25秒前
xinlou完成签到,获得积分10
25秒前
25秒前
djxdjt发布了新的文献求助10
26秒前
April发布了新的文献求助10
27秒前
呆呆兽发布了新的文献求助10
27秒前
28秒前
28秒前
科研通AI6.1应助麻酱采纳,获得10
28秒前
豆花完成签到,获得积分10
29秒前
怕黑向秋发布了新的文献求助10
29秒前
29秒前
lolly完成签到,获得积分10
30秒前
xinlou发布了新的文献求助10
31秒前
HZH完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771799
求助须知:如何正确求助?哪些是违规求助? 5593934
关于积分的说明 15428394
捐赠科研通 4905053
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587067
关于科研通互助平台的介绍 1541958