A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery

电池(电) 可靠性(半导体) 计算机科学 锂离子电池 颗粒过滤器 均方误差 可靠性工程 卡尔曼滤波器 工程类 人工智能 功率(物理) 统计 数学 物理 量子力学
作者
Lisen Yan,Jun Peng,Dianzhu Gao,Yue Wu,Yongjie Liu,Heng Li,Weirong Liu,Zhiwu Huang
出处
期刊:Energy [Elsevier]
卷期号:243: 123038-123038 被引量:51
标识
DOI:10.1016/j.energy.2021.123038
摘要

Lithium-ion batteries have been employed extensively in many important applications in the electronics industry. For safety and reliability, it is extremely critical to get an accurate and early-stage remaining useful life prognostic of lithium-ion batteries. However, battery lifetime predictions are challenging due to the nonlinear battery degradation and the operational diversity among batteries. To increase the prediction accuracy, this paper proposes a hybrid framework combining the model-based method and data-driven method. In this framework, after estimating the battery capacity using online operating data, battery lifetime is predicted by the model-based empirical model as well as the data-driven support vector regression model. For the empirical model, its adaptability is improved by updating the parameters dynamically with particle filters. For the support vector regression model, its performance is optimized by an artificial bee colony algorithm. Finally, a fusion method with cascaded structure is proposed to integrate predictions from these two models, which boosts the prediction accuracy by iteratively exerting two concatenated Kalman filters. The generality and effectiveness of the proposed method are verified on battery data sets provided by NASA and our testing bench, respectively. The experimental results illustrate that the proposed method can improve the prediction accuracy of battery remaining lifetime, especially at the early stage. RMSE and MAE of the proposed hybrid framework are within 4 and 3.5. Compared with two existed hybrid methods, RMSE of prediction can be reduced by at least 7.6%. A reduction of not less than 5.9% in MAE of prediction is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyw发布了新的文献求助10
2秒前
3秒前
Aza发布了新的文献求助10
3秒前
3秒前
上官若男应助张之晟采纳,获得10
4秒前
4秒前
4秒前
明理友琴发布了新的文献求助10
5秒前
6秒前
温柔安筠关注了科研通微信公众号
6秒前
7秒前
LTB发布了新的文献求助10
8秒前
烟花应助wyw采纳,获得30
8秒前
暗生崎乐发布了新的文献求助10
8秒前
hms发布了新的文献求助10
9秒前
华仔应助龚书婷采纳,获得10
10秒前
张之晟完成签到,获得积分20
12秒前
Hgybdo完成签到,获得积分10
12秒前
kingwill发布了新的文献求助30
13秒前
ZJRerrr发布了新的文献求助10
14秒前
tree完成签到,获得积分10
18秒前
19秒前
FashionBoy应助tly采纳,获得10
19秒前
green完成签到,获得积分10
20秒前
星辰大海应助JIE采纳,获得10
21秒前
21秒前
幼安k完成签到,获得积分10
21秒前
evans完成签到,获得积分10
21秒前
烟花应助667788采纳,获得10
22秒前
22秒前
Owen应助ZHXX采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
bubu11关注了科研通微信公众号
23秒前
你好完成签到 ,获得积分10
23秒前
aikeyan发布了新的文献求助10
23秒前
peilinyu完成签到,获得积分10
24秒前
善学以致用应助ZJRerrr采纳,获得10
24秒前
卡西莫多发布了新的文献求助10
25秒前
吃面的章鱼完成签到,获得积分10
26秒前
26秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457360
求助须知:如何正确求助?哪些是违规求助? 4563864
关于积分的说明 14291813
捐赠科研通 4488514
什么是DOI,文献DOI怎么找? 2458558
邀请新用户注册赠送积分活动 1448595
关于科研通互助平台的介绍 1424229