A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery

电池(电) 可靠性(半导体) 计算机科学 锂离子电池 颗粒过滤器 均方误差 可靠性工程 卡尔曼滤波器 工程类 人工智能 功率(物理) 统计 数学 物理 量子力学
作者
Lisen Yan,Jun Peng,Dianzhu Gao,Yue Wu,Yongjie Liu,Heng Li,Weirong Liu,Zhiwu Huang
出处
期刊:Energy [Elsevier]
卷期号:243: 123038-123038 被引量:51
标识
DOI:10.1016/j.energy.2021.123038
摘要

Lithium-ion batteries have been employed extensively in many important applications in the electronics industry. For safety and reliability, it is extremely critical to get an accurate and early-stage remaining useful life prognostic of lithium-ion batteries. However, battery lifetime predictions are challenging due to the nonlinear battery degradation and the operational diversity among batteries. To increase the prediction accuracy, this paper proposes a hybrid framework combining the model-based method and data-driven method. In this framework, after estimating the battery capacity using online operating data, battery lifetime is predicted by the model-based empirical model as well as the data-driven support vector regression model. For the empirical model, its adaptability is improved by updating the parameters dynamically with particle filters. For the support vector regression model, its performance is optimized by an artificial bee colony algorithm. Finally, a fusion method with cascaded structure is proposed to integrate predictions from these two models, which boosts the prediction accuracy by iteratively exerting two concatenated Kalman filters. The generality and effectiveness of the proposed method are verified on battery data sets provided by NASA and our testing bench, respectively. The experimental results illustrate that the proposed method can improve the prediction accuracy of battery remaining lifetime, especially at the early stage. RMSE and MAE of the proposed hybrid framework are within 4 and 3.5. Compared with two existed hybrid methods, RMSE of prediction can be reduced by at least 7.6%. A reduction of not less than 5.9% in MAE of prediction is achieved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JHL完成签到 ,获得积分10
1秒前
3秒前
3秒前
黎是叻熠黎完成签到,获得积分10
4秒前
每天必补一科完成签到,获得积分10
4秒前
花生完成签到,获得积分10
5秒前
mufcyang完成签到,获得积分10
5秒前
6秒前
缪缪发布了新的文献求助10
7秒前
7秒前
风清扬发布了新的文献求助10
8秒前
甜美乘云完成签到,获得积分10
9秒前
万能图书馆应助嘿嘿采纳,获得10
9秒前
11秒前
11秒前
xuxin完成签到 ,获得积分10
12秒前
大模型应助温柔柜子采纳,获得10
12秒前
啦啦啦完成签到,获得积分10
12秒前
易点邦发布了新的文献求助10
13秒前
13秒前
yyymmm完成签到,获得积分10
15秒前
Anna完成签到 ,获得积分10
16秒前
17秒前
18秒前
18秒前
18秒前
18秒前
小西完成签到 ,获得积分0
18秒前
科目三应助黄超采纳,获得10
18秒前
19秒前
19秒前
20秒前
情怀应助YANYAN采纳,获得10
21秒前
嘿嘿发布了新的文献求助10
22秒前
锅锅发布了新的文献求助10
22秒前
充电宝应助是墩墩呀采纳,获得10
24秒前
26秒前
风清扬发布了新的文献求助10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714