A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery

电池(电) 可靠性(半导体) 计算机科学 锂离子电池 颗粒过滤器 均方误差 可靠性工程 卡尔曼滤波器 工程类 人工智能 功率(物理) 统计 数学 量子力学 物理
作者
Lisen Yan,Jun Peng,Dianzhu Gao,Yue Wu,Yongjie Liu,Heng Li,Weirong Liu,Zhiwu Huang
出处
期刊:Energy [Elsevier]
卷期号:243: 123038-123038 被引量:51
标识
DOI:10.1016/j.energy.2021.123038
摘要

Lithium-ion batteries have been employed extensively in many important applications in the electronics industry. For safety and reliability, it is extremely critical to get an accurate and early-stage remaining useful life prognostic of lithium-ion batteries. However, battery lifetime predictions are challenging due to the nonlinear battery degradation and the operational diversity among batteries. To increase the prediction accuracy, this paper proposes a hybrid framework combining the model-based method and data-driven method. In this framework, after estimating the battery capacity using online operating data, battery lifetime is predicted by the model-based empirical model as well as the data-driven support vector regression model. For the empirical model, its adaptability is improved by updating the parameters dynamically with particle filters. For the support vector regression model, its performance is optimized by an artificial bee colony algorithm. Finally, a fusion method with cascaded structure is proposed to integrate predictions from these two models, which boosts the prediction accuracy by iteratively exerting two concatenated Kalman filters. The generality and effectiveness of the proposed method are verified on battery data sets provided by NASA and our testing bench, respectively. The experimental results illustrate that the proposed method can improve the prediction accuracy of battery remaining lifetime, especially at the early stage. RMSE and MAE of the proposed hybrid framework are within 4 and 3.5. Compared with two existed hybrid methods, RMSE of prediction can be reduced by at least 7.6%. A reduction of not less than 5.9% in MAE of prediction is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水若琳完成签到,获得积分10
1秒前
Tian发布了新的文献求助30
3秒前
emperor关注了科研通微信公众号
3秒前
皮皮虾完成签到,获得积分10
5秒前
7秒前
12秒前
13秒前
两飞飞完成签到,获得积分10
14秒前
英俊的铭应助卡司采纳,获得10
16秒前
夜无疆完成签到,获得积分10
16秒前
大模型应助jjq采纳,获得30
18秒前
demmeretock发布了新的文献求助10
18秒前
20秒前
江子骞完成签到 ,获得积分10
20秒前
传奇3应助wcy采纳,获得30
21秒前
学术办公室主任完成签到,获得积分10
21秒前
神玖荧烛发布了新的文献求助10
23秒前
yzbj发布了新的文献求助10
24秒前
老实乌冬面完成签到 ,获得积分10
25秒前
27秒前
俭朴依白完成签到,获得积分10
27秒前
29秒前
张大星完成签到 ,获得积分10
29秒前
英姑应助iuhgnor采纳,获得10
30秒前
美好斓发布了新的文献求助30
32秒前
32秒前
33秒前
枯夏发布了新的文献求助10
35秒前
jiujiu完成签到,获得积分10
35秒前
bkagyin应助Sir.采纳,获得10
36秒前
38秒前
38秒前
大模型应助科研通管家采纳,获得10
38秒前
rosalieshi应助科研通管家采纳,获得30
38秒前
gaoyuan发布了新的文献求助10
38秒前
桐桐应助科研通管家采纳,获得10
38秒前
隐形曼青应助科研通管家采纳,获得10
38秒前
rosalieshi应助科研通管家采纳,获得30
39秒前
ding应助科研通管家采纳,获得10
39秒前
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578