A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery

电池(电) 可靠性(半导体) 计算机科学 锂离子电池 颗粒过滤器 均方误差 可靠性工程 卡尔曼滤波器 工程类 人工智能 功率(物理) 统计 数学 物理 量子力学
作者
Lisen Yan,Jun Peng,Dianzhu Gao,Yue Wu,Yongjie Liu,Heng Li,Weirong Liu,Zhiwu Huang
出处
期刊:Energy [Elsevier]
卷期号:243: 123038-123038 被引量:51
标识
DOI:10.1016/j.energy.2021.123038
摘要

Lithium-ion batteries have been employed extensively in many important applications in the electronics industry. For safety and reliability, it is extremely critical to get an accurate and early-stage remaining useful life prognostic of lithium-ion batteries. However, battery lifetime predictions are challenging due to the nonlinear battery degradation and the operational diversity among batteries. To increase the prediction accuracy, this paper proposes a hybrid framework combining the model-based method and data-driven method. In this framework, after estimating the battery capacity using online operating data, battery lifetime is predicted by the model-based empirical model as well as the data-driven support vector regression model. For the empirical model, its adaptability is improved by updating the parameters dynamically with particle filters. For the support vector regression model, its performance is optimized by an artificial bee colony algorithm. Finally, a fusion method with cascaded structure is proposed to integrate predictions from these two models, which boosts the prediction accuracy by iteratively exerting two concatenated Kalman filters. The generality and effectiveness of the proposed method are verified on battery data sets provided by NASA and our testing bench, respectively. The experimental results illustrate that the proposed method can improve the prediction accuracy of battery remaining lifetime, especially at the early stage. RMSE and MAE of the proposed hybrid framework are within 4 and 3.5. Compared with two existed hybrid methods, RMSE of prediction can be reduced by at least 7.6%. A reduction of not less than 5.9% in MAE of prediction is achieved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
硕士完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
天真三问给天真三问的求助进行了留言
1秒前
1秒前
2秒前
大模型应助艾雪采纳,获得10
2秒前
Owen应助Suzi采纳,获得30
2秒前
2秒前
2秒前
丘比特应助念安采纳,获得10
2秒前
葡萄柚子应助CoQ采纳,获得20
4秒前
科研通AI6.1应助FEN采纳,获得10
4秒前
yy完成签到,获得积分10
5秒前
yushanriqing发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
超级采白发布了新的文献求助10
7秒前
今天看文献了吗完成签到,获得积分10
7秒前
lhx完成签到,获得积分10
8秒前
9秒前
钱妙梦完成签到,获得积分10
9秒前
Ttt发布了新的文献求助10
9秒前
yang关注了科研通微信公众号
9秒前
慕青应助谨慎啤酒采纳,获得10
10秒前
xiaying完成签到,获得积分20
11秒前
11秒前
QiongYin_123完成签到 ,获得积分10
11秒前
冷酷芝完成签到,获得积分10
11秒前
12秒前
孙大圣发布了新的文献求助10
12秒前
12秒前
SciGPT应助aicxx采纳,获得10
12秒前
13秒前
13秒前
平常的小天鹅完成签到,获得积分10
13秒前
13秒前
Ava应助憨憨兔子采纳,获得10
13秒前
TYT发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078