A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery

电池(电) 可靠性(半导体) 计算机科学 锂离子电池 颗粒过滤器 均方误差 可靠性工程 卡尔曼滤波器 工程类 人工智能 功率(物理) 统计 数学 物理 量子力学
作者
Lisen Yan,Jun Peng,Dianzhu Gao,Yue Wu,Yongjie Liu,Heng Li,Weirong Liu,Zhiwu Huang
出处
期刊:Energy [Elsevier]
卷期号:243: 123038-123038 被引量:51
标识
DOI:10.1016/j.energy.2021.123038
摘要

Lithium-ion batteries have been employed extensively in many important applications in the electronics industry. For safety and reliability, it is extremely critical to get an accurate and early-stage remaining useful life prognostic of lithium-ion batteries. However, battery lifetime predictions are challenging due to the nonlinear battery degradation and the operational diversity among batteries. To increase the prediction accuracy, this paper proposes a hybrid framework combining the model-based method and data-driven method. In this framework, after estimating the battery capacity using online operating data, battery lifetime is predicted by the model-based empirical model as well as the data-driven support vector regression model. For the empirical model, its adaptability is improved by updating the parameters dynamically with particle filters. For the support vector regression model, its performance is optimized by an artificial bee colony algorithm. Finally, a fusion method with cascaded structure is proposed to integrate predictions from these two models, which boosts the prediction accuracy by iteratively exerting two concatenated Kalman filters. The generality and effectiveness of the proposed method are verified on battery data sets provided by NASA and our testing bench, respectively. The experimental results illustrate that the proposed method can improve the prediction accuracy of battery remaining lifetime, especially at the early stage. RMSE and MAE of the proposed hybrid framework are within 4 and 3.5. Compared with two existed hybrid methods, RMSE of prediction can be reduced by at least 7.6%. A reduction of not less than 5.9% in MAE of prediction is achieved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
殷2000发布了新的文献求助10
1秒前
Ava应助看文献了采纳,获得10
1秒前
2秒前
2秒前
喜悦音响发布了新的文献求助10
2秒前
3秒前
Yeteen发布了新的文献求助10
3秒前
星辰大海应助素心采纳,获得10
5秒前
dew应助王璐采纳,获得10
5秒前
6秒前
啦啦啦发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
1中蓝发布了新的文献求助10
8秒前
上官若男应助是拿铁吖采纳,获得10
8秒前
悠悠发布了新的文献求助30
8秒前
小阿飞完成签到,获得积分10
8秒前
11秒前
11秒前
华仔应助zoele采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
15秒前
15秒前
ying完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
香蕉觅云应助阿星捌采纳,获得10
20秒前
落后成仁完成签到,获得积分20
20秒前
20秒前
20秒前
zoele发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
归尘应助麦地娜采纳,获得10
23秒前
寻道图强应助麦地娜采纳,获得30
23秒前
大个应助麦地娜采纳,获得30
23秒前
23秒前
24秒前
24秒前
25秒前
zheng完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535