A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery

电池(电) 可靠性(半导体) 计算机科学 锂离子电池 颗粒过滤器 均方误差 可靠性工程 卡尔曼滤波器 工程类 人工智能 功率(物理) 统计 数学 物理 量子力学
作者
Lisen Yan,Jun Peng,Dianzhu Gao,Yue Wu,Yongjie Liu,Heng Li,Weirong Liu,Zhiwu Huang
出处
期刊:Energy [Elsevier]
卷期号:243: 123038-123038 被引量:51
标识
DOI:10.1016/j.energy.2021.123038
摘要

Lithium-ion batteries have been employed extensively in many important applications in the electronics industry. For safety and reliability, it is extremely critical to get an accurate and early-stage remaining useful life prognostic of lithium-ion batteries. However, battery lifetime predictions are challenging due to the nonlinear battery degradation and the operational diversity among batteries. To increase the prediction accuracy, this paper proposes a hybrid framework combining the model-based method and data-driven method. In this framework, after estimating the battery capacity using online operating data, battery lifetime is predicted by the model-based empirical model as well as the data-driven support vector regression model. For the empirical model, its adaptability is improved by updating the parameters dynamically with particle filters. For the support vector regression model, its performance is optimized by an artificial bee colony algorithm. Finally, a fusion method with cascaded structure is proposed to integrate predictions from these two models, which boosts the prediction accuracy by iteratively exerting two concatenated Kalman filters. The generality and effectiveness of the proposed method are verified on battery data sets provided by NASA and our testing bench, respectively. The experimental results illustrate that the proposed method can improve the prediction accuracy of battery remaining lifetime, especially at the early stage. RMSE and MAE of the proposed hybrid framework are within 4 and 3.5. Compared with two existed hybrid methods, RMSE of prediction can be reduced by at least 7.6%. A reduction of not less than 5.9% in MAE of prediction is achieved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四海发布了新的文献求助10
2秒前
炸鸡发布了新的文献求助10
2秒前
黄豆完成签到,获得积分10
3秒前
3秒前
Jasper应助jj采纳,获得10
4秒前
驿路梨花完成签到,获得积分10
4秒前
4秒前
4秒前
粗暴的鱼发布了新的文献求助10
6秒前
太叔易云发布了新的文献求助10
6秒前
晓晓完成签到,获得积分10
7秒前
Tracy.完成签到,获得积分10
7秒前
7秒前
7秒前
nuliya发布了新的文献求助10
8秒前
zsy发布了新的文献求助10
10秒前
善良的樱完成签到 ,获得积分10
10秒前
淡淡尔烟发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
阿依咕噜完成签到,获得积分10
12秒前
NexusExplorer应助炸鸡采纳,获得10
12秒前
12秒前
YUYUYU发布了新的文献求助10
13秒前
JamesPei应助美女采纳,获得10
13秒前
jia完成签到 ,获得积分10
13秒前
传奇3应助小蚂蚁采纳,获得10
15秒前
温柔的秋柳完成签到,获得积分10
16秒前
16秒前
柏林寒冬应助wenqiliu采纳,获得10
18秒前
寒冷猫咪发布了新的文献求助20
18秒前
豌豆炸薯片完成签到,获得积分10
18秒前
CodeCraft应助太叔易云采纳,获得10
20秒前
赵海帆完成签到,获得积分10
20秒前
科研人完成签到,获得积分10
20秒前
21秒前
21秒前
FashionBoy应助LucyLi采纳,获得10
22秒前
22秒前
无花果应助满意芯采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497