A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery

电池(电) 可靠性(半导体) 计算机科学 锂离子电池 颗粒过滤器 均方误差 可靠性工程 卡尔曼滤波器 工程类 人工智能 功率(物理) 统计 数学 物理 量子力学
作者
Lisen Yan,Jun Peng,Dianzhu Gao,Yue Wu,Yongjie Liu,Heng Li,Weirong Liu,Zhiwu Huang
出处
期刊:Energy [Elsevier BV]
卷期号:243: 123038-123038 被引量:51
标识
DOI:10.1016/j.energy.2021.123038
摘要

Lithium-ion batteries have been employed extensively in many important applications in the electronics industry. For safety and reliability, it is extremely critical to get an accurate and early-stage remaining useful life prognostic of lithium-ion batteries. However, battery lifetime predictions are challenging due to the nonlinear battery degradation and the operational diversity among batteries. To increase the prediction accuracy, this paper proposes a hybrid framework combining the model-based method and data-driven method. In this framework, after estimating the battery capacity using online operating data, battery lifetime is predicted by the model-based empirical model as well as the data-driven support vector regression model. For the empirical model, its adaptability is improved by updating the parameters dynamically with particle filters. For the support vector regression model, its performance is optimized by an artificial bee colony algorithm. Finally, a fusion method with cascaded structure is proposed to integrate predictions from these two models, which boosts the prediction accuracy by iteratively exerting two concatenated Kalman filters. The generality and effectiveness of the proposed method are verified on battery data sets provided by NASA and our testing bench, respectively. The experimental results illustrate that the proposed method can improve the prediction accuracy of battery remaining lifetime, especially at the early stage. RMSE and MAE of the proposed hybrid framework are within 4 and 3.5. Compared with two existed hybrid methods, RMSE of prediction can be reduced by at least 7.6%. A reduction of not less than 5.9% in MAE of prediction is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucky李完成签到,获得积分10
刚刚
1秒前
自觉雨文完成签到,获得积分10
1秒前
恒星完成签到,获得积分10
1秒前
NexusExplorer应助KK采纳,获得10
2秒前
Zx_1993应助如意的秋白采纳,获得20
2秒前
2秒前
苗条的契关注了科研通微信公众号
3秒前
传奇3应助小狗乖乖怪采纳,获得10
3秒前
科研通AI5应助Yang采纳,获得10
4秒前
4秒前
wanci应助ZZZ采纳,获得30
5秒前
科研通AI5应助xuexin采纳,获得10
5秒前
hihigood完成签到,获得积分20
5秒前
5秒前
6秒前
请问发布了新的文献求助10
8秒前
8秒前
shadow完成签到,获得积分10
8秒前
hongyan完成签到,获得积分10
8秒前
9秒前
wangwangwang发布了新的文献求助10
9秒前
zjy发布了新的文献求助10
9秒前
完美世界应助邹雄辉采纳,获得10
9秒前
Tian发布了新的文献求助10
9秒前
9秒前
10秒前
王亚宁完成签到 ,获得积分20
10秒前
11秒前
11秒前
11秒前
11秒前
高高发布了新的文献求助10
12秒前
12秒前
111发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193933
求助须知:如何正确求助?哪些是违规求助? 4376236
关于积分的说明 13628897
捐赠科研通 4231184
什么是DOI,文献DOI怎么找? 2320812
邀请新用户注册赠送积分活动 1319105
关于科研通互助平台的介绍 1269416