Large-Scale Computation Offloading Using a Multi-Agent Reinforcement Learning in Heterogeneous Multi-Access Edge Computing

计算机科学 计算卸载 强化学习 分布式计算 服务器 延迟(音频) 计算 边缘计算 理论计算机科学 GSM演进的增强数据速率 人工智能 计算机网络 算法 电信
作者
Zhen Gao,Lei Yang,Yu Dai
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:22 (6): 3425-3443 被引量:48
标识
DOI:10.1109/tmc.2022.3141080
摘要

Recently, existing computation offloading methods have provided extremely low service latency for mobile users (MUs) in multi-access edge computing (MEC). However, this remains a challenge in large-scale mixed cooperative-competitive MUs heterogeneous MEC environments. Moreover, existing methods focus more on all offloaded tasks handled by static resource allocation MEC servers (ESs) within a time interval, ignoring on-demand requirements of heterogeneous tasks, resulting in many tasks being dropped or wasting resources, especially for latency-sensitive tasks. To address these issues, we present a decentralized computation offloading solution based on the Attention-weighted Recurrent Multi-Agent Actor-Critic (ARMAAC). First, we design a recurrent actor-critic framework to assist MU agents in remembering historical resource allocation information of ESs to better understand the future state of ESs, especially in dynamic resource allocation. Second, an attention mechanism is introduced to compress the joint observation space dimension of all MUs agent to adapt to large-scale MUs. Finally, the actor-critic framework with double centralized critics and Dueling network is redesigned considering the instability and convergence difficulties caused by the sensitive relationship between the actor and critic networks. The experiments show that ARMAAC improves task completion rates and reduces average system cost by 11.01% $\sim$ 14.03% and 10.45% $\sim$ 15.56% compared with baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害羞的冰激凌完成签到,获得积分10
刚刚
对对发布了新的文献求助10
刚刚
594zqz完成签到,获得积分10
1秒前
2秒前
山野发布了新的文献求助20
3秒前
lyh发布了新的文献求助10
4秒前
prettymud发布了新的文献求助10
5秒前
完美世界应助YYY采纳,获得30
5秒前
倦梦还完成签到,获得积分10
7秒前
8秒前
8秒前
赘婿应助刘佳鑫采纳,获得10
9秒前
flawless完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助150
12秒前
大狒狒发布了新的文献求助10
13秒前
shunshun51213完成签到,获得积分10
14秒前
Song发布了新的文献求助10
14秒前
14秒前
16秒前
16秒前
丘比特应助茉莉采纳,获得10
17秒前
单薄飞莲完成签到,获得积分10
20秒前
春风发布了新的文献求助10
20秒前
YYY发布了新的文献求助30
21秒前
Akim应助娃哈哈采纳,获得10
21秒前
23秒前
24秒前
26秒前
JINWEIJIANG完成签到,获得积分10
28秒前
28秒前
29秒前
LIN完成签到,获得积分10
29秒前
30秒前
JINWEIJIANG发布了新的文献求助10
31秒前
小钟小钟发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
32秒前
追寻荔枝发布了新的文献求助10
34秒前
桐桐应助CCCC采纳,获得10
35秒前
NexusExplorer应助想去hk采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124206
求助须知:如何正确求助?哪些是违规求助? 4328520
关于积分的说明 13487475
捐赠科研通 4162916
什么是DOI,文献DOI怎么找? 2281925
邀请新用户注册赠送积分活动 1283217
关于科研通互助平台的介绍 1222406