劈形算符
简并能级
有界函数
欧米茄
操作员(生物学)
非线性系统
空格(标点符号)
符号(数学)
期限(时间)
物理
功能(生物学)
纯数学
数学
组合数学
数学分析
作者
Ahmed Aberqi,Abdelmoujib Benkirane,Mhamed Elmassoudi
标识
DOI:10.1007/s43036-021-00182-x
摘要
In the present paper, we discuss the existence of bounded weak solutions for the degenerate nonlinear elliptic problem $$\begin{aligned} \text{ div }(\Gamma (x,u,\nabla u))+\kappa (x,u,\nabla u)=f, \end{aligned}$$where \(\text{ div }(\Gamma (x,u,\nabla u))\) is a degenerate Leray−Lions operator and defined on non-reflexive Musielak space \(D(A)\subset W_{0}^{1}L_{\varphi }(\Omega )\), such that \(\varphi\) is a Musielak function. The lower term \(\kappa\) satisfies only the growth condition and no sign condition is assumed on it. The source data f are in \(L^{N}(\Omega )\).
科研通智能强力驱动
Strongly Powered by AbleSci AI