Hyperspectral imaging for non-destructive detection of honey adulteration

高光谱成像 模式识别(心理学) 遥感 人工智能 环境科学 化学 计算机科学 色谱法 地质学
作者
Yuanyuan Shao,Yukang Shi,Guantao Xuan,Quankai Li,Fuhui Wang,chengkun shi,Zhichao Hu
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:118: 103340-103340 被引量:26
标识
DOI:10.1016/j.vibspec.2022.103340
摘要

• Honey samples were adulterated at seven different levels. • Detection of adulteration based in hyperspectral imaging technology. • LIBSVM and PLSR models for qualitative and quantitative analysis. Honey adulteration causes serious economic losses for the industry, and it is difficult to detect various syrup adulteration. There is no doubt that the research on honey adulteration has scientific significance for maintaining the market order of honey and syrup and protecting the legitimate rights and interests of consumers. Hyperspectral images from pure and adulterated samples were captured using a hyperspectral imaging system (400–1000 nm). In this study, hyperspectral imaging and chemometrics were combined to detect honey adulteration, and the prediction model of honey adulteration detection was established. The pure nectar mixed 0 %, 5 %, 10 %, 15 %, 20 %, 30 % and 40 % of adulterants (fructose syrup and sucrose solution). By samples set partitioning based on joint X-Y distances (SPXY), the pure honey samples and the data fusion adulterated samples were assigned to the calibration set (560) and validation set (280) at the ratio of 2:1. The collected hyperspectral images were analyzed by principal component analysis (PCA) to preliminarily detect honey adulteration. Based on effective wavelengths, the adulterated sample analysis model of pure honey and adulterated honey was established. The results showed that the classification accuracy of LIBSVM model for honey adulteration was 92.5 %, which realized the detection of honey adulteration. Partial least square regression (PLSR) was used to establish adulteration level prediction model. The validation accuracy of this model was 0.84 and the root mean square error (RMSEV) of validation was 5.26 %. Therefore, it is feasible to detect honey adulteration by hyperspectral imaging. This method has the advantages of accuracy, simplicity, and greenness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助JunHan采纳,获得10
刚刚
对称破缺发布了新的文献求助10
1秒前
ZW完成签到 ,获得积分10
1秒前
liuzhigang完成签到 ,获得积分0
1秒前
2秒前
轻松书白完成签到,获得积分10
2秒前
乐乐乐完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
wwwzy1996发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
孤独巡礼完成签到,获得积分10
4秒前
6秒前
aayy发布了新的文献求助10
7秒前
大王完成签到,获得积分10
7秒前
huibzh发布了新的文献求助10
7秒前
你好完成签到,获得积分10
8秒前
商毛毛完成签到,获得积分10
9秒前
不倦应助刘可采纳,获得10
11秒前
wwwzy1996完成签到,获得积分10
11秒前
米浆完成签到 ,获得积分10
11秒前
JunHan发布了新的文献求助10
12秒前
宵宵完成签到 ,获得积分10
12秒前
由哎完成签到,获得积分10
13秒前
古丁完成签到,获得积分10
13秒前
传奇3应助喏晨采纳,获得30
14秒前
李健应助牧万万采纳,获得10
15秒前
111完成签到 ,获得积分10
16秒前
18秒前
CodeCraft应助zhangz采纳,获得30
21秒前
我是老大应助君故采纳,获得10
21秒前
22秒前
龙龙冲发布了新的文献求助50
22秒前
23秒前
adkdad完成签到,获得积分10
23秒前
XRQ完成签到 ,获得积分10
24秒前
小蘑菇应助maoxinnan采纳,获得10
24秒前
26秒前
小样完成签到,获得积分10
26秒前
jiajia完成签到,获得积分10
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071