Boron-induced activation of Ru nanoparticles anchored on carbon nanotubes for the enhanced pH-independent hydrogen evolution reaction

化学 催化作用 离解(化学) 电催化剂 无机化学 吸附 纳米颗粒 碳纳米管 光化学 电化学 纳米技术 物理化学 材料科学 电极 有机化学
作者
Xuzhuo Sun,Wenhui Li,Jing Chen,Xinli Yang,Baofan Wu,Zhengxi Wang,Bo Li,Haibo Zhang
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:616: 338-346 被引量:29
标识
DOI:10.1016/j.jcis.2022.02.072
摘要

As a promising dopant, electron deficient B atom not only tunes the electronic structure of electrocatalysts for improving their intrinsic catalytic activities, but also combines with hydroxy radical as strong adsorption sites for accelerating the water dissociation during the hydrogen evolution reaction (HER). In this paper, we report an electrocatalyst based on boron-modified Ru anchored on carbon nanotubes (B-Ru@CNT) that shows impressive HER activity in acidic and alkaline media. The boron-rich closo-[B12H12]2- borane was selected as a moderately strong reductant for the in situ reduction of a Ru salt, which yielded B-doped Ru nanoparticles. The experimental and theoretical results indicate that the incorporation of B not only weakens the Ru-H bond and downshifts the d-bond centre of Ru from the Fermi level by reducing the electron density at Ru but also accelerates the water dissociation reaction by providing B sites, which strongly adsorb OH* intermediates, and nearby Ru sites, which act as sites for the adsorption of the H* intermediate, thus boosting the HER performance and enhancing the HER kinetics. As a result of the tuning of the electronic structure via B doping, B-Ru@CNT showed excellent HER performance, yielding overpotentials of 17 and 62 mV at a current density of 10 mA cm-2 in alkaline and acidic solutions, respectively. These results indicate that our synthetic method is a promising route to B-doped metallic Ru with enhanced pH-independent HER performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助陈杰采纳,获得10
刚刚
1秒前
Jasper应助含糊采纳,获得10
1秒前
dfggg发布了新的文献求助10
1秒前
跑在颖发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
yatou5651发布了新的文献求助10
1秒前
2秒前
乐乐应助koi采纳,获得10
2秒前
asdfqwer发布了新的文献求助10
2秒前
2秒前
chemhub完成签到,获得积分10
2秒前
杜杜完成签到,获得积分10
3秒前
周小慧发布了新的文献求助10
3秒前
3秒前
自由寻菱完成签到 ,获得积分10
3秒前
4秒前
Akim应助丘奇采纳,获得10
5秒前
美丽小蕾发布了新的文献求助10
5秒前
dingdong发布了新的文献求助10
5秒前
ZX完成签到 ,获得积分10
5秒前
九川发布了新的文献求助10
5秒前
6秒前
6秒前
SandyH关注了科研通微信公众号
7秒前
7秒前
公西元柏发布了新的文献求助10
7秒前
碱性沉默发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
SciGPT应助猪猪采纳,获得10
8秒前
123发布了新的文献求助10
8秒前
独特微笑完成签到,获得积分10
8秒前
8秒前
nuonuo完成签到,获得积分10
9秒前
⊙▽⊙完成签到,获得积分10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762