碳纳米管
掺杂剂
离子液体
兴奋剂
热电效应
材料科学
吸附
化学工程
离子键合
纳米技术
四氟硼酸盐
无机化学
有机化学
离子
化学
催化作用
光电子学
工程类
物理
热力学
作者
Jaemin Jung,Eui Hyun Suh,Yeongje Jeong,Dong‐Jin Yun,Seul Chan Park,Jong Gyu Oh,Jaeyoung Jang
标识
DOI:10.1016/j.cej.2022.135526
摘要
The molecular adsorption of dopants on the surface of carbon nanotubes (CNTs) is directly related to the thermoelectric (TE) properties of CNTs by tuning carrier densities and mobilities. Although imidazolium-based ionic liquids have shown great potential as dopants owing to their feasibility in various interactions with CNTs, the effects of doping on the TE performance of CNTs have not been fully explored. Herein, the doping mechanisms of CNTs with 1-hexyl-3-methylimidazolium tetrafluoroborate are investigated under different surface states of CNTs controlled by adjusting the amount of anionic surfactants. For the negatively charged CNT surfaces by the anionic surfactants, imidazolium cations are preferentially adsorbed through the strong interactions with the anionic head groups of the surfactants, leading to p-doping. When the CNT surfaces become relatively neutral, more tetrafluoroborate anions can easily access the CNT surface, thereby inducing n-doping. These doping mechanisms can be selectively controlled using a simple solution process. The optimized CNT films exhibit significantly enhanced p-type TE power factors of up to 762 μW m−1 K−2. The solution-processed easy-to-cut CNT films are integrated with the n-type CNT films doped with poly(ethyleneimine) to fabricate high-performance flexible TE generators with a maximum power of 6.75 μW and voltage of 334 mV.
科研通智能强力驱动
Strongly Powered by AbleSci AI