高价分子
多硫化物
材料科学
电化学
纳米技术
电池(电)
电解质
碳纳米管
化学工程
碘
化学
电极
功率(物理)
物理化学
冶金
工程类
物理
量子力学
作者
Zhouhao Wang,Junping Hu,Jing Liu,Yew Von Lim,Haobin Song,Ye Wang,Tingting He,Changsheng Huang,Xinwen Yan,Daohong Zhang,Shaozhuan Huang
出处
期刊:Small
[Wiley]
日期:2022-02-26
卷期号:18 (15)
被引量:17
标识
DOI:10.1002/smll.202106716
摘要
Herein, a type of hypervalent iodine compound-iodosobenzene (PhIO)-is proposed to regulate the LiPSs electrochemistry and enhance the performance of Li-S battery. PhIO owns the practical advantages of low-cost, commercial availability, environmental friendliness and chemical stability. The lone pair electrons of oxygen atoms in PhIO play a critical role in forming a strong Lewis acid-base interaction with terminal Li in LiPSs. Moreover, the commercial PhIO can be easily converted to nanoparticles (≈20 nm) and uniformly loaded on a carbon nanotube (CNT) scaffold, ensuring sufficient chemisorption for LiPSs. The integrated functional PhIO@CNT interlayer affords a LiPSs-concentrated shield that not only strongly obstructs the LiPSs penetration but also significantly enhances the electrolyte wettability and Li+ conduction. The PhIO@CNT interlayer also serves as a "vice current collector" to accommodate various LiPSs and render smooth LiPSs transformation, which suppresses insulating Li2 S2 /Li2 S layer formation and facilitates Li+ diffusion. The Li-S battery based on PhIO@CNT interlayer (6 wt% PhIO) exhibits stable cycling over 1000 cycles (0.033% capacity decay per cycle) and excellent rate performance (686.6 mAh g-1 at 3 C). This work demonstrates the great potential of PhIO in regulating LiPSs and provides a new avenue towards the low-cost and sustainable application of Li-S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI