亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tell, Imagine, and Search: End-to-end Learning for Composing Text and Image to Image Retrieval

计算机科学 图像检索 判别式 图像(数学) 一致性(知识库) 水准点(测量) 图像自动标注 人工智能 视觉文字 光学(聚焦) 生成语法 模态(人机交互) 情报检索 特征(语言学) 模式识别(心理学) 地理 哲学 物理 光学 语言学 大地测量学
作者
Feifei Zhang,Mingliang Xu,Changsheng Xu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:18 (2): 1-23 被引量:12
标识
DOI:10.1145/3478642
摘要

Composing Text and Image to Image Retrieval ( CTI-IR ) is an emerging task in computer vision, which allows retrieving images relevant to a query image with text describing desired modifications to the query image. Most conventional cross-modal retrieval approaches usually take one modality data as the query to retrieve relevant data of another modality. Different from the existing methods, in this article, we propose an end-to-end trainable network for simultaneous image generation and CTI-IR . The proposed model is based on Generative Adversarial Network (GAN) and enjoys several merits. First, it can learn a generative and discriminative feature for the query (a query image with text description) by jointly training a generative model and a retrieval model. Second, our model can automatically manipulate the visual features of the reference image in terms of the text description by the adversarial learning between the synthesized image and target image. Third, global-local collaborative discriminators and attention-based generators are exploited, allowing our approach to focus on both the global and local differences between the query image and the target image. As a result, the semantic consistency and fine-grained details of the generated images can be better enhanced in our model. The generated image can also be used to interpret and empower our retrieval model. Quantitative and qualitative evaluations on three benchmark datasets demonstrate that the proposed algorithm performs favorably against state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助桃子e采纳,获得10
1秒前
淡然绝山发布了新的文献求助10
8秒前
Tree_QD完成签到 ,获得积分10
13秒前
科研通AI6.1应助桃子e采纳,获得10
17秒前
Lisheng000应助淡然绝山采纳,获得10
17秒前
22秒前
26秒前
王越完成签到,获得积分10
30秒前
张涛完成签到 ,获得积分10
32秒前
33秒前
Criminology34应助科研通管家采纳,获得10
36秒前
BowieHuang应助科研通管家采纳,获得10
36秒前
Criminology34应助科研通管家采纳,获得10
36秒前
BowieHuang应助科研通管家采纳,获得10
36秒前
36秒前
轻松大王应助科研通管家采纳,获得10
37秒前
FashionBoy应助科研通管家采纳,获得10
37秒前
Criminology34应助科研通管家采纳,获得10
37秒前
桃子e发布了新的文献求助10
37秒前
55秒前
桃子e发布了新的文献求助10
1分钟前
1分钟前
1分钟前
神勇的荟完成签到 ,获得积分10
1分钟前
痛痛痛发布了新的文献求助80
1分钟前
桃子e发布了新的文献求助10
1分钟前
痛痛痛完成签到,获得积分10
1分钟前
1分钟前
桃子e发布了新的文献求助10
1分钟前
CipherSage应助长情胡萝卜采纳,获得10
1分钟前
2分钟前
jcksonzhj完成签到,获得积分10
2分钟前
Jin发布了新的文献求助80
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
聪慧千亦发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788381
求助须知:如何正确求助?哪些是违规求助? 5706772
关于积分的说明 15473474
捐赠科研通 4916463
什么是DOI,文献DOI怎么找? 2646349
邀请新用户注册赠送积分活动 1594016
关于科研通互助平台的介绍 1548447