Machine-learning-based anomaly detection in optical fiber monitoring

异常检测 计算机科学 窃听 自编码 异常(物理) 净流量 断层(地质) 实时计算 深度学习 数据挖掘 计算机网络 人工智能 凝聚态物理 物理 地质学 地震学
作者
Khouloud Abdelli,Joo Yeon Cho,Florian Azendorf,Helmut Grießer,Carsten Tropschug,Stephan Pachnicke
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:14 (5): 365-365 被引量:40
标识
DOI:10.1364/jocn.451289
摘要

Secure and reliable data communication in optical networks is critical for high-speed Internet. However, optical fibers, serving as the data transmission medium providing connectivity to billons of users worldwide, are prone to a variety of anomalies resulting from hard failures (e.g., fiber cuts) and malicious physical attacks [e.g., optical eavesdropping (fiber tapping)]. Such anomalies may cause network disruption, thereby inducing huge financial and data losses, compromising the confidentiality of optical networks by gaining unauthorized access to the carried data, or gradually degrading the network operations. Therefore, it is highly required to implement efficient anomaly detection, diagnosis, and localization schemes for enhancing the availability and reliability of optical networks. In this paper, we propose a data-driven approach to accurately and quickly detect, diagnose, and localize fiber fault anomalies, including fiber cuts and optical eavesdropping attacks. The proposed method combines an autoencoder-based anomaly detection and an attention-based bidirectional gated recurrent unit algorithm, whereby the former is used for fault detection and the latter is adopted for fault diagnosis and localization once an anomaly is detected by the autoencoder. We verify the efficiency of our proposed approach by experiments under various attack anomaly scenarios using real operational data. The experimental results demonstrate that (i) the autoencoder detects any fiber fault or anomaly with an F1 score of 96.86%, and (ii) the attention-based bidirectional gated recurrent unit algorithm identifies the detected anomalies with an average accuracy of 98.2% and localizes the faults with an average root mean square error of 0.19 m.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张羽翀发布了新的文献求助10
刚刚
1秒前
情怀应助zakary采纳,获得10
1秒前
隐形曼青应助荔枝吖采纳,获得10
1秒前
3秒前
科目三应助璨澄采纳,获得10
4秒前
王九八发布了新的文献求助10
4秒前
酷波er应助wittig采纳,获得10
4秒前
蓝天白云发布了新的文献求助10
5秒前
踏实口红完成签到,获得积分10
8秒前
9秒前
Orange应助东京芝士123采纳,获得10
11秒前
Akim应助张羽翀采纳,获得10
14秒前
蛋白发布了新的文献求助10
14秒前
愚者gggg完成签到,获得积分10
14秒前
18秒前
zjk关闭了zjk文献求助
21秒前
21秒前
mepumpkin发布了新的文献求助10
21秒前
Mandy完成签到 ,获得积分10
22秒前
mfpp完成签到,获得积分10
23秒前
脑洞疼应助wuyan采纳,获得10
23秒前
24秒前
24秒前
duxiao发布了新的文献求助10
26秒前
望北楼主发布了新的文献求助10
26秒前
Venovenom发布了新的文献求助100
28秒前
qi0625完成签到,获得积分10
29秒前
excellent_shit完成签到,获得积分10
32秒前
34秒前
34秒前
34秒前
健忘白关注了科研通微信公众号
35秒前
36秒前
俭朴的凡之完成签到,获得积分10
36秒前
阳光BOY发布了新的文献求助10
39秒前
一往如常发布了新的文献求助10
39秒前
spirit发布了新的文献求助10
40秒前
Andy完成签到,获得积分10
42秒前
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962151
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140723
捐赠科研通 3241093
什么是DOI,文献DOI怎么找? 1791332
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803382