Breast MRI Background Parenchymal Enhancement Categorization Using Deep Learning: Outperforming the Radiologist

医学 乳房成像 乳房磁振造影 麦克内马尔试验 接收机工作特性 放射科 乳腺癌 深度学习 人工智能 核医学 医学物理学 乳腺摄影术 计算机科学 癌症 内科学 统计 数学
作者
Sarah Eskreis‐Winkler,Elizabeth Sutton,Donna D’Alessio,Katherine Gallagher,Nicole B. Saphier,Joseph N. Stember,Danny F. Martinez,Elizabeth A. Morris,Katja Pinker
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (4): 1068-1076 被引量:15
标识
DOI:10.1002/jmri.28111
摘要

Background Background parenchymal enhancement (BPE) is assessed on breast MRI reports as mandated by the Breast Imaging Reporting and Data System (BI‐RADS) but is prone to inter and intrareader variation. Semiautomated and fully automated BPE assessment tools have been developed but none has surpassed radiologist BPE designations. Purpose To develop a deep learning model for automated BPE classification and to compare its performance with current standard‐of‐care radiology report BPE designations. Study Type Retrospective. Population Consecutive high‐risk patients (i.e. >20% lifetime risk of breast cancer) who underwent contrast‐enhanced screening breast MRI from October 2013 to January 2019. The study included 5224 breast MRIs, divided into 3998 training, 444 validation, and 782 testing exams. On radiology reports, 1286 exams were categorized as high BPE (i.e., marked or moderate) and 3938 as low BPE (i.e., mild or minimal). Field Strength/Sequence A 1.5 T or 3 T system; one precontrast and three postcontrast phases of fat‐saturated T1‐weighted dynamic contrast‐enhanced imaging. Assessment Breast MRIs were used to develop two deep learning models (Slab artificial intelligence (AI); maximum intensity projection [MIP] AI) for BPE categorization using radiology report BPE labels. Models were tested on a heldout test sets using radiology report BPE and three‐reader averaged consensus as the reference standards. Statistical Tests Model performance was assessed using receiver operating characteristic curve analysis. Associations between high BPE and BI‐RADS assessments were evaluated using McNemar's chi‐square test ( α * = 0.025). Results The Slab AI model significantly outperformed the MIP AI model across the full test set (area under the curve of 0.84 vs. 0.79) using the radiology report reference standard. Using three‐reader consensus BPE labels reference standard, our AI model significantly outperformed radiology report BPE labels. Finally, the AI model was significantly more likely than the radiologist to assign “high BPE” to suspicious breast MRIs and significantly less likely than the radiologist to assign “high BPE” to negative breast MRIs. Data Conclusion Fully automated BPE assessments for breast MRIs could be more accurate than BPE assessments from radiology reports. Level of Evidence 4 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助小福采纳,获得10
刚刚
dear_xiaokuan完成签到,获得积分10
2秒前
科研民工完成签到 ,获得积分10
2秒前
CodeCraft应助小平采纳,获得10
3秒前
hua完成签到,获得积分10
3秒前
甜财完成签到 ,获得积分10
3秒前
万能图书馆应助铁板采纳,获得10
3秒前
4秒前
科研通AI5应助QQ采纳,获得10
5秒前
8秒前
王加通完成签到,获得积分10
9秒前
研友_LMBa6n发布了新的文献求助10
10秒前
小巧的懿轩给小巧的懿轩的求助进行了留言
10秒前
浮游应助雪白的小甜瓜采纳,获得10
12秒前
咕噜咕噜发布了新的文献求助10
13秒前
lcy发布了新的文献求助10
13秒前
hha发布了新的文献求助10
13秒前
小邸应助惠慧采纳,获得10
14秒前
搜集达人应助坦率的心锁采纳,获得10
14秒前
白蒲桃完成签到 ,获得积分10
15秒前
zheertu关注了科研通微信公众号
15秒前
16秒前
方科发布了新的文献求助10
17秒前
18秒前
19秒前
科研通AI5应助小皮采纳,获得10
19秒前
Lin完成签到,获得积分10
19秒前
无心的笑蓝完成签到,获得积分10
20秒前
20秒前
20秒前
研友_LMBa6n发布了新的文献求助10
21秒前
自然的代亦完成签到,获得积分10
22秒前
cuijx发布了新的文献求助10
22秒前
科目三应助张婕采纳,获得10
23秒前
24秒前
26秒前
26秒前
27秒前
zheertu发布了新的文献求助10
27秒前
bkagyin应助葡萄皮采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548713
求助须知:如何正确求助?哪些是违规求助? 3979371
关于积分的说明 12320932
捐赠科研通 3648002
什么是DOI,文献DOI怎么找? 2009069
邀请新用户注册赠送积分活动 1044491
科研通“疑难数据库(出版商)”最低求助积分说明 933056