Breast MRI Background Parenchymal Enhancement Categorization Using Deep Learning: Outperforming the Radiologist

医学 乳房成像 乳房磁振造影 麦克内马尔试验 接收机工作特性 放射科 乳腺癌 深度学习 人工智能 核医学 医学物理学 乳腺摄影术 计算机科学 癌症 内科学 统计 数学
作者
Sarah Eskreis‐Winkler,Elizabeth Sutton,Donna D’Alessio,Katherine Gallagher,Nicole B. Saphier,Joseph N. Stember,Danny F. Martinez,Elizabeth A. Morris,Katja Pinker
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (4): 1068-1076 被引量:15
标识
DOI:10.1002/jmri.28111
摘要

Background Background parenchymal enhancement (BPE) is assessed on breast MRI reports as mandated by the Breast Imaging Reporting and Data System (BI‐RADS) but is prone to inter and intrareader variation. Semiautomated and fully automated BPE assessment tools have been developed but none has surpassed radiologist BPE designations. Purpose To develop a deep learning model for automated BPE classification and to compare its performance with current standard‐of‐care radiology report BPE designations. Study Type Retrospective. Population Consecutive high‐risk patients (i.e. >20% lifetime risk of breast cancer) who underwent contrast‐enhanced screening breast MRI from October 2013 to January 2019. The study included 5224 breast MRIs, divided into 3998 training, 444 validation, and 782 testing exams. On radiology reports, 1286 exams were categorized as high BPE (i.e., marked or moderate) and 3938 as low BPE (i.e., mild or minimal). Field Strength/Sequence A 1.5 T or 3 T system; one precontrast and three postcontrast phases of fat‐saturated T1‐weighted dynamic contrast‐enhanced imaging. Assessment Breast MRIs were used to develop two deep learning models (Slab artificial intelligence (AI); maximum intensity projection [MIP] AI) for BPE categorization using radiology report BPE labels. Models were tested on a heldout test sets using radiology report BPE and three‐reader averaged consensus as the reference standards. Statistical Tests Model performance was assessed using receiver operating characteristic curve analysis. Associations between high BPE and BI‐RADS assessments were evaluated using McNemar's chi‐square test ( α * = 0.025). Results The Slab AI model significantly outperformed the MIP AI model across the full test set (area under the curve of 0.84 vs. 0.79) using the radiology report reference standard. Using three‐reader consensus BPE labels reference standard, our AI model significantly outperformed radiology report BPE labels. Finally, the AI model was significantly more likely than the radiologist to assign “high BPE” to suspicious breast MRIs and significantly less likely than the radiologist to assign “high BPE” to negative breast MRIs. Data Conclusion Fully automated BPE assessments for breast MRIs could be more accurate than BPE assessments from radiology reports. Level of Evidence 4 Technical Efficacy Stage 3

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈康乃馨完成签到,获得积分20
刚刚
2秒前
2秒前
3秒前
乐乐应助wei采纳,获得10
3秒前
Jessica完成签到,获得积分10
3秒前
4秒前
4秒前
dfggb发布了新的文献求助10
5秒前
科研通AI2S应助chemstation采纳,获得30
6秒前
娜娜家的大宝贝完成签到,获得积分10
6秒前
7秒前
sunshine完成签到,获得积分10
7秒前
Fiee发布了新的文献求助10
8秒前
qc关闭了qc文献求助
9秒前
Bgsister完成签到,获得积分10
9秒前
Jessica发布了新的文献求助10
9秒前
顾矜应助无辜的醉波采纳,获得10
11秒前
危机的白风完成签到,获得积分10
12秒前
13秒前
领导范儿应助pamela采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
哈哈哈哈完成签到,获得积分10
13秒前
bgt完成签到,获得积分10
14秒前
研友_VZG7GZ应助happiness采纳,获得10
14秒前
15秒前
QinCaibin发布了新的文献求助10
17秒前
金戈发布了新的文献求助10
17秒前
香蕉觅云应助xue采纳,获得10
17秒前
17秒前
bgt发布了新的文献求助100
18秒前
18秒前
dfggb完成签到,获得积分10
18秒前
18秒前
满意幻莲完成签到,获得积分10
19秒前
LingYi发布了新的文献求助30
19秒前
19秒前
烟花应助古丹娜采纳,获得10
20秒前
勤奋映梦完成签到,获得积分10
20秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620844
求助须知:如何正确求助?哪些是违规求助? 4705469
关于积分的说明 14932123
捐赠科研通 4763548
什么是DOI,文献DOI怎么找? 2551284
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474712