亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Breast MRI Background Parenchymal Enhancement Categorization Using Deep Learning: Outperforming the Radiologist

医学 乳房成像 乳房磁振造影 麦克内马尔试验 接收机工作特性 放射科 乳腺癌 深度学习 人工智能 核医学 医学物理学 乳腺摄影术 计算机科学 癌症 内科学 统计 数学
作者
Sarah Eskreis‐Winkler,Elizabeth Sutton,Donna D’Alessio,Katherine Gallagher,Nicole B. Saphier,Joseph N. Stember,Danny F. Martinez,Elizabeth A. Morris,Katja Pinker
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (4): 1068-1076 被引量:15
标识
DOI:10.1002/jmri.28111
摘要

Background Background parenchymal enhancement (BPE) is assessed on breast MRI reports as mandated by the Breast Imaging Reporting and Data System (BI‐RADS) but is prone to inter and intrareader variation. Semiautomated and fully automated BPE assessment tools have been developed but none has surpassed radiologist BPE designations. Purpose To develop a deep learning model for automated BPE classification and to compare its performance with current standard‐of‐care radiology report BPE designations. Study Type Retrospective. Population Consecutive high‐risk patients (i.e. >20% lifetime risk of breast cancer) who underwent contrast‐enhanced screening breast MRI from October 2013 to January 2019. The study included 5224 breast MRIs, divided into 3998 training, 444 validation, and 782 testing exams. On radiology reports, 1286 exams were categorized as high BPE (i.e., marked or moderate) and 3938 as low BPE (i.e., mild or minimal). Field Strength/Sequence A 1.5 T or 3 T system; one precontrast and three postcontrast phases of fat‐saturated T1‐weighted dynamic contrast‐enhanced imaging. Assessment Breast MRIs were used to develop two deep learning models (Slab artificial intelligence (AI); maximum intensity projection [MIP] AI) for BPE categorization using radiology report BPE labels. Models were tested on a heldout test sets using radiology report BPE and three‐reader averaged consensus as the reference standards. Statistical Tests Model performance was assessed using receiver operating characteristic curve analysis. Associations between high BPE and BI‐RADS assessments were evaluated using McNemar's chi‐square test ( α * = 0.025). Results The Slab AI model significantly outperformed the MIP AI model across the full test set (area under the curve of 0.84 vs. 0.79) using the radiology report reference standard. Using three‐reader consensus BPE labels reference standard, our AI model significantly outperformed radiology report BPE labels. Finally, the AI model was significantly more likely than the radiologist to assign “high BPE” to suspicious breast MRIs and significantly less likely than the radiologist to assign “high BPE” to negative breast MRIs. Data Conclusion Fully automated BPE assessments for breast MRIs could be more accurate than BPE assessments from radiology reports. Level of Evidence 4 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳十三发布了新的文献求助10
1分钟前
小蘑菇应助悦耳十三采纳,获得10
1分钟前
2分钟前
悦耳十三发布了新的文献求助10
2分钟前
星辰大海应助科研通管家采纳,获得30
4分钟前
fuueer完成签到 ,获得积分10
4分钟前
Vincent完成签到 ,获得积分10
5分钟前
zzp完成签到 ,获得积分10
5分钟前
xwx关闭了xwx文献求助
7分钟前
xwx关闭了xwx文献求助
8分钟前
8分钟前
8分钟前
Yportne完成签到,获得积分10
8分钟前
Yportne发布了新的文献求助10
8分钟前
Ava应助交钱上班采纳,获得10
8分钟前
专一的芒果完成签到 ,获得积分10
10分钟前
ZXD1989完成签到 ,获得积分10
10分钟前
11分钟前
交钱上班发布了新的文献求助10
11分钟前
13分钟前
姚老表完成签到,获得积分10
13分钟前
13分钟前
香蕉觅云应助端庄的饼干采纳,获得10
13分钟前
端庄的饼干完成签到,获得积分20
13分钟前
科研通AI2S应助spark810采纳,获得10
16分钟前
17分钟前
18分钟前
凭风听纸鸢完成签到,获得积分10
19分钟前
mengliu完成签到,获得积分10
19分钟前
kuoping完成签到,获得积分10
19分钟前
无花果应助科研通管家采纳,获得10
20分钟前
ling361完成签到,获得积分10
20分钟前
早晚完成签到 ,获得积分10
20分钟前
Mipe完成签到,获得积分10
20分钟前
Demi_Ming完成签到,获得积分10
21分钟前
21分钟前
21分钟前
科研通AI2S应助希勤采纳,获得30
21分钟前
材料虎完成签到,获得积分10
21分钟前
慕青应助材料虎采纳,获得10
22分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133970
求助须知:如何正确求助?哪些是违规求助? 2784836
关于积分的说明 7768686
捐赠科研通 2440205
什么是DOI,文献DOI怎么找? 1297295
科研通“疑难数据库(出版商)”最低求助积分说明 624920
版权声明 600792