Breast MRI Background Parenchymal Enhancement Categorization Using Deep Learning: Outperforming the Radiologist

医学 乳房成像 乳房磁振造影 麦克内马尔试验 接收机工作特性 放射科 乳腺癌 深度学习 人工智能 核医学 医学物理学 乳腺摄影术 计算机科学 癌症 内科学 统计 数学
作者
Sarah Eskreis‐Winkler,Elizabeth Sutton,Donna D’Alessio,Katherine Gallagher,Nicole B. Saphier,Joseph N. Stember,Danny F. Martinez,Elizabeth A. Morris,Katja Pinker
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (4): 1068-1076 被引量:15
标识
DOI:10.1002/jmri.28111
摘要

Background Background parenchymal enhancement (BPE) is assessed on breast MRI reports as mandated by the Breast Imaging Reporting and Data System (BI‐RADS) but is prone to inter and intrareader variation. Semiautomated and fully automated BPE assessment tools have been developed but none has surpassed radiologist BPE designations. Purpose To develop a deep learning model for automated BPE classification and to compare its performance with current standard‐of‐care radiology report BPE designations. Study Type Retrospective. Population Consecutive high‐risk patients (i.e. >20% lifetime risk of breast cancer) who underwent contrast‐enhanced screening breast MRI from October 2013 to January 2019. The study included 5224 breast MRIs, divided into 3998 training, 444 validation, and 782 testing exams. On radiology reports, 1286 exams were categorized as high BPE (i.e., marked or moderate) and 3938 as low BPE (i.e., mild or minimal). Field Strength/Sequence A 1.5 T or 3 T system; one precontrast and three postcontrast phases of fat‐saturated T1‐weighted dynamic contrast‐enhanced imaging. Assessment Breast MRIs were used to develop two deep learning models (Slab artificial intelligence (AI); maximum intensity projection [MIP] AI) for BPE categorization using radiology report BPE labels. Models were tested on a heldout test sets using radiology report BPE and three‐reader averaged consensus as the reference standards. Statistical Tests Model performance was assessed using receiver operating characteristic curve analysis. Associations between high BPE and BI‐RADS assessments were evaluated using McNemar's chi‐square test ( α * = 0.025). Results The Slab AI model significantly outperformed the MIP AI model across the full test set (area under the curve of 0.84 vs. 0.79) using the radiology report reference standard. Using three‐reader consensus BPE labels reference standard, our AI model significantly outperformed radiology report BPE labels. Finally, the AI model was significantly more likely than the radiologist to assign “high BPE” to suspicious breast MRIs and significantly less likely than the radiologist to assign “high BPE” to negative breast MRIs. Data Conclusion Fully automated BPE assessments for breast MRIs could be more accurate than BPE assessments from radiology reports. Level of Evidence 4 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂泊发布了新的文献求助10
刚刚
1秒前
龙哥发布了新的文献求助10
4秒前
5秒前
5秒前
开心的马里奥完成签到,获得积分20
6秒前
清脆南霜发布了新的文献求助10
7秒前
Wwnjie完成签到 ,获得积分10
7秒前
HSA发布了新的文献求助10
7秒前
WW完成签到,获得积分10
8秒前
li发布了新的文献求助10
9秒前
wyx发布了新的文献求助10
9秒前
pwj完成签到,获得积分10
10秒前
宽厚的肩膀完成签到 ,获得积分10
10秒前
12秒前
da_line完成签到,获得积分10
13秒前
裴向雪完成签到,获得积分10
13秒前
mingyahaoa完成签到,获得积分10
13秒前
14秒前
桐桐应助清脆的绮梅采纳,获得10
14秒前
李爱国应助ShenLi采纳,获得80
15秒前
xhh完成签到 ,获得积分10
20秒前
如意的问枫完成签到 ,获得积分10
21秒前
22秒前
自觉画笔完成签到 ,获得积分10
23秒前
fuxiaobao关注了科研通微信公众号
24秒前
zjj完成签到,获得积分10
25秒前
默默白开水完成签到 ,获得积分10
25秒前
li完成签到,获得积分20
26秒前
xxywmt发布了新的文献求助10
26秒前
笨笨的蜡烛完成签到,获得积分10
28秒前
CipherSage应助wanwan采纳,获得30
28秒前
从容的寒安完成签到,获得积分20
28秒前
jlj完成签到,获得积分10
29秒前
wen发布了新的文献求助10
32秒前
yunjian1583完成签到,获得积分10
33秒前
权志龙完成签到,获得积分10
33秒前
科研鬼才完成签到,获得积分10
34秒前
Lucas应助Yummy采纳,获得10
35秒前
xxywmt完成签到,获得积分10
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997687
求助须知:如何正确求助?哪些是违规求助? 3537226
关于积分的说明 11271044
捐赠科研通 3276377
什么是DOI,文献DOI怎么找? 1806965
邀请新用户注册赠送积分活动 883609
科研通“疑难数据库(出版商)”最低求助积分说明 809975