End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation

预言 计算机科学 稳健性(进化) 电池(电) 电池容量 降级(电信) 可靠性工程 实时计算 数据挖掘 工程类 功率(物理) 物理 化学 基因 电信 量子力学 生物化学
作者
Te Han,Zhe Wang,Huixing Meng
出处
期刊:Journal of Power Sources [Elsevier BV]
卷期号:520: 230823-230823 被引量:77
标识
DOI:10.1016/j.jpowsour.2021.230823
摘要

Real-time capacity estimation of lithium-ion batteries is crucial but challenging in battery management systems (BMSs). Due to the complexity of battery degradation mechanism, data-driven methods are prevalent recently. Despite achieved promising results, most of developed approaches still assume that the degradation trajectories of batteries are same between the training and testing domains. However, the inconsistency of batteries and the randomness during degradation process lead to the distribution discrepancy, which further affects the estimation precision of trained model. To overcome this challenge, a novel deep learning framework assisted with domain adaptation is proposed in this paper. First, a deep long short-term memory (LSTM) network is designed to capture the nonlinear mapping from monitored data, specially, terminal voltage and current, to battery capacity. Then, a domain adaptation layer is integrated to the LSTM with the purpose of degradation feature alignment between the source and target batteries. The proposed method is capable of establishing the general capacity estimation model for the discrepant batteries by only using a few cycling data of target batteries. Extensive experiments on two battery datasets from NASA Ames Prognostics Data Repository demonstrate that the proposed method outperforms the state-of-the-art data-driven methods in terms of estimation precision and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoxiao完成签到,获得积分10
刚刚
石会发完成签到,获得积分10
1秒前
Akim应助Vera采纳,获得10
2秒前
3秒前
3秒前
乐观小之应助邓欣怡采纳,获得10
5秒前
JG发布了新的文献求助10
6秒前
盼盼完成签到,获得积分10
6秒前
赵哈哈完成签到,获得积分10
6秒前
SciGPT应助Jaikaran采纳,获得30
7秒前
8秒前
小肥羊发布了新的文献求助10
9秒前
今后应助陶醉晓凡采纳,获得10
9秒前
NexusExplorer应助千流采纳,获得10
9秒前
Kikua发布了新的文献求助25
9秒前
QiJiLuLu完成签到,获得积分10
9秒前
共享精神应助xiaostou采纳,获得10
10秒前
15秒前
17秒前
Leeu完成签到,获得积分10
17秒前
CodeCraft应助韩浩男采纳,获得10
17秒前
18秒前
poohpooh完成签到,获得积分10
18秒前
19秒前
橘猫ADD发布了新的文献求助20
19秒前
付绒完成签到,获得积分10
20秒前
20秒前
Wang发布了新的文献求助10
20秒前
21秒前
充电宝应助wcwzcz采纳,获得10
23秒前
yifan625发布了新的文献求助10
23秒前
23秒前
24秒前
后陡门的夏完成签到,获得积分10
24秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
27秒前
zyf发布了新的文献求助10
28秒前
28秒前
samaritan发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089