End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation

预言 计算机科学 稳健性(进化) 电池(电) 电池容量 降级(电信) 可靠性工程 实时计算 数据挖掘 工程类 功率(物理) 物理 化学 基因 电信 量子力学 生物化学
作者
Te Han,Zhe Wang,Huixing Meng
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:520: 230823-230823 被引量:102
标识
DOI:10.1016/j.jpowsour.2021.230823
摘要

Real-time capacity estimation of lithium-ion batteries is crucial but challenging in battery management systems (BMSs). Due to the complexity of battery degradation mechanism, data-driven methods are prevalent recently. Despite achieved promising results, most of developed approaches still assume that the degradation trajectories of batteries are same between the training and testing domains. However, the inconsistency of batteries and the randomness during degradation process lead to the distribution discrepancy, which further affects the estimation precision of trained model. To overcome this challenge, a novel deep learning framework assisted with domain adaptation is proposed in this paper. First, a deep long short-term memory (LSTM) network is designed to capture the nonlinear mapping from monitored data, specially, terminal voltage and current, to battery capacity. Then, a domain adaptation layer is integrated to the LSTM with the purpose of degradation feature alignment between the source and target batteries. The proposed method is capable of establishing the general capacity estimation model for the discrepant batteries by only using a few cycling data of target batteries. Extensive experiments on two battery datasets from NASA Ames Prognostics Data Repository demonstrate that the proposed method outperforms the state-of-the-art data-driven methods in terms of estimation precision and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
wuji2077完成签到,获得积分10
2秒前
无极微光应助冬雾采纳,获得20
2秒前
Dore完成签到,获得积分20
3秒前
小满完成签到,获得积分10
3秒前
LRJ完成签到,获得积分10
3秒前
丘比特应助struggling2026采纳,获得10
3秒前
研友_VZG7GZ应助斯文听寒采纳,获得10
3秒前
xr发布了新的文献求助10
4秒前
畸你太美发布了新的文献求助10
4秒前
4秒前
顺心的海菡完成签到,获得积分10
4秒前
An完成签到,获得积分10
4秒前
生动曼冬发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
脑洞疼应助tangtang采纳,获得10
6秒前
wanci应助Sylvia采纳,获得10
6秒前
小满发布了新的文献求助10
7秒前
7秒前
Dali应助hsp采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
田様应助further采纳,获得30
8秒前
科研通AI6应助尚尚采纳,获得10
8秒前
科研通AI2S应助理想采纳,获得10
9秒前
ZZW发布了新的文献求助10
9秒前
9秒前
万能图书馆应助畸你太美采纳,获得10
9秒前
执着的莆发布了新的文献求助10
10秒前
yy发布了新的文献求助30
10秒前
毛毛发布了新的文献求助20
10秒前
科研通AI6应助茉莉香片采纳,获得10
10秒前
英俊的铭应助秀丽的大门采纳,获得10
10秒前
不散思念关注了科研通微信公众号
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576558
求助须知:如何正确求助?哪些是违规求助? 4661927
关于积分的说明 14738788
捐赠科研通 4602503
什么是DOI,文献DOI怎么找? 2525869
邀请新用户注册赠送积分活动 1495750
关于科研通互助平台的介绍 1465414