An optimized variational mode decomposition method and its application in vibration signal analysis of bearings

希尔伯特-黄变换 样本熵 振动 支持向量机 模式识别(心理学) 计算机科学 熵(时间箭头) 人工智能 算法 近似熵 人工神经网络 白噪声 声学 量子力学 电信 物理
作者
Jun Gu,Yuxing Peng,Hao Lu,Xiangdong Chang,Shuang Cao,Guoan Chen,Bobo Cao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:21 (5): 2386-2407 被引量:21
标识
DOI:10.1177/14759217211057444
摘要

The performance of the rolling bearing of a spindle device is directly related to the safety and reliability of the operation of a mine hoist. To extract bearing vibration signal features effectively for fault diagnosis, a feature extraction method based on the parameter optimization of a variational mode decomposition (VMD) method and permutation entropy (PE) is proposed. In addition, a support vector machine (SVM) classifier is used to identify bearing fault types. An analogue signal is used to test the effect of noise and sampling frequency on VMD performance. Focused on the problem of the VMD method needing to determine the number of mode components K and a penalty factor α during the signal decomposition process, a genetic algorithm is used to optimize the parameter combination [K,α] with the minimum sample entropy as the indicator. By using mean squared error (MSE) and correlation coefficient, an evaluation indicator is constructed to determine the decomposition effects of the optimized VMD, centre frequency, empirical mode decomposition (EMD) and ensemble EMD (EEMD) methods. The normalized PE of the five mode components is used as an eigenvalue, which is used as the input parameter of the SVM. Two different experimental datasets are used to verify the effectiveness of the proposed method. The results show that the proposed method has better diagnostic accuracy than EMD, EEMD and a BP neural network in the case of limited samples and unknown sample inputs. It can provide a good reference for the diagnosis of a rolling bearing and has practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动人的亦云完成签到 ,获得积分10
1秒前
2秒前
lx完成签到 ,获得积分10
2秒前
在写了发布了新的文献求助10
2秒前
赘婿应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得30
3秒前
田様应助科研通管家采纳,获得10
3秒前
圆锥香蕉应助科研通管家采纳,获得20
3秒前
dong应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
知许解夏应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得20
4秒前
Ava应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
扎心应助科研通管家采纳,获得10
4秒前
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
6秒前
木风完成签到,获得积分10
6秒前
心灵美的涑完成签到 ,获得积分10
6秒前
6秒前
正直千兰发布了新的文献求助10
6秒前
淡淡夕阳发布了新的文献求助10
7秒前
MM完成签到,获得积分10
7秒前
麦乐迪应助T拐拐采纳,获得10
7秒前
kinase完成签到 ,获得积分10
8秒前
搜集达人应助专注巨人采纳,获得10
8秒前
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403