Microfluidics-based production of chitosan-gellan nanocomplexes encapsulating caffeine

分散性 微流控 壳聚糖 化学 Zeta电位 粒径 多糖 纳米技术 水解 化学工程 静电学 溶解度 扩散 材料科学 有机化学 物理化学 纳米颗粒 热力学 工程类 物理
作者
Larissa Ribas Fonseca,Tatiana Porto Santos,Aline Czaikoski,Rosiane Lopes Cunha
出处
期刊:Food Research International [Elsevier BV]
卷期号:151: 110885-110885 被引量:11
标识
DOI:10.1016/j.foodres.2021.110885
摘要

Electrostatic complexes produced by interactions between polysaccharides have promising applications in the medical, pharmaceutical and food fields. In this light, for the development of such particles, microfluidics emerges as a promising technique in which processes occur at a strict laminar flow regime, allowing diffusion-dominated transport and particle formation in highly-controlled conditions. As a proof of concept, we compared bulk versus microfluidic (different devices simulating a range of residence times) processes for the production of electrostatic complexes of gellan with either chitosan (molecular weight ∼ 28 kDa) or hydrolyzed chitosan (molecular weight ∼ 3 kDa). Regardless of the process, polysaccharide solutions (pH 4.5) were mixed in pre-defined concentrations (polysaccharide ratios) to form electrostatic complexes that were used to encapsulate caffeine. These complexes were characterized by zeta potential measurements and particle size distribution. Overall, microfluidics produced complexes with improved characteristics such as lower polydispersity index (PDI ∼ 0.1) and mean size (∼200 nm) when compared to the conventional bulk process (PDI ∼ 0.3 and mean size ∼ 400 nm). Moreover, hydrolyzed chitosan (HC) contributed to an even smaller size and PDI value of the complexes. Such outcome is associated with the lower molecular weight and higher solubility of HC when comparing to conventional chitosan, which in turn improves electrostatic complexation. Caffeine could also be encapsulated in all complexes, but the highest encapsulation efficiency was achieved using microfluidics (70%) and with the geometry that provided a longer residence time. Therefore, we were able to demonstrate that microfluidics is clearly an effective strategy for generating electrostatic complexes with improved properties. Ultimately, this technique demonstrated a high potential for the production of vehicles of bioactive compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
棋士应助赫连紫采纳,获得10
刚刚
棋士应助zhengke924采纳,获得10
刚刚
ZSJ完成签到,获得积分10
刚刚
刚刚
boluohu完成签到,获得积分10
1秒前
年轻的青柏完成签到,获得积分10
1秒前
逻辑完成签到,获得积分10
1秒前
虚幻的山兰完成签到,获得积分10
1秒前
合适夏天完成签到,获得积分10
1秒前
米修发布了新的文献求助10
2秒前
拉长的湘完成签到,获得积分10
2秒前
朱大头完成签到,获得积分10
2秒前
zww完成签到,获得积分10
2秒前
LLY完成签到,获得积分10
2秒前
烤全鱼呢完成签到,获得积分10
3秒前
Sissi完成签到,获得积分10
3秒前
亮星发布了新的文献求助10
4秒前
lq完成签到,获得积分10
4秒前
niceweiwei发布了新的文献求助10
4秒前
小豆豆应助佰斯特威采纳,获得30
5秒前
abc1122完成签到,获得积分10
5秒前
hou发布了新的文献求助10
5秒前
kkkklo完成签到,获得积分10
6秒前
南宫书瑶完成签到,获得积分10
6秒前
不会取名啊完成签到,获得积分10
6秒前
mu完成签到,获得积分10
6秒前
6秒前
祺屿梦完成签到,获得积分10
6秒前
toda_erica完成签到,获得积分10
6秒前
文献求助完成签到,获得积分10
7秒前
张岱帅z完成签到,获得积分10
8秒前
x笑一完成签到,获得积分10
8秒前
友好的惋清完成签到 ,获得积分10
8秒前
缓慢笑珊完成签到,获得积分10
9秒前
Dalia完成签到,获得积分10
9秒前
丘比特应助约克宁采纳,获得10
11秒前
皮皮蛙完成签到,获得积分10
11秒前
小甜发布了新的文献求助10
11秒前
keke完成签到,获得积分10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874