Copper hydroxide (Cu(OH)2) has been elected as a newly-emerging green disinfectant to deal with membrane biofouling in the treatment of bacteria-contaminated water; however, the decoration strategy of it with the granular form on membrane substrates limits the practical application. Here a novel surface-confined methodology was proposed for preparing freestanding Cu(OH)2 nanosheet-assembled nanofibrous membranes (CNNMs) with the anti-biofouling property via the in-suit coprecipitation and heat-induced growth method. The vertically aligned Cu(OH)2 nanosheets were in-suit rooted on the surface of the nanofiber scaffold with high binding fastness. The acquired CNNMs possess comprehensive performances of high porosity, prominent mechanical strength, fatigue resistance, and superior bactericidal efficiency of 99.999%, which endowed the CNNMs ultrahigh filtration fluxes (24000 L m-2 h-1) and durability to disinfect bacteria-containing water effectively. This facile strategy may throw light on manufacturing novel inorganic nanosheet-rooted nanofibrous membranes for water disinfection and public health.