SVDD-based weighted oversampling technique for imbalanced and overlapped dataset learning

过采样 人工智能 支持向量机 边界判定 机器学习 班级(哲学) 边界(拓扑) 计算机科学 模式识别(心理学) 欠采样 领域(数学分析) 数学 数据挖掘 计算机网络 数学分析 带宽(计算)
作者
Xinmin Tao,Yujia Zheng,Wei Chen,Xiaohan Zhang,Qian Lin,Zhiting Fan,Shan Huang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:588: 13-51 被引量:22
标识
DOI:10.1016/j.ins.2021.12.066
摘要

Imbalanced dataset classification issue poses a major challenge on machine learning domain. Traditional supervised learning algorithms usually bias towards the majority class when handling imbalanced datasets, thus leading to poor classification results on the minority class. The learning task would become crucially difficult when there are overlapping and within-imbalance issues in imbalanced datasets, which are often the case and have been proven to severely deteriorate the classification performance relative to between-class imbalance. In this paper, we propose a novel SVDD boundary-based weighted oversampling approach (SVDDWSMOTE) for handling imbalanced and overlapped data. The proposed approach first applies support vector data description (SVDD) model with greater penalty constant for the minority class than the majority class to generate the class boundary, and then identifies those misclassified majority or few minority instances by the generated class boundary as potential overlapped or noisy ones and eliminates them. To address the within-balance issues, we propose a weight assignment strategy based on densities and the distances to the SVDD class boundary, which facilitates simultaneously combating between-class and within-class imbalance issues caused by complicated distribution. In addition, such a strategy also favors generating more synthetic minority instances for borderline and sparser instances which are usually informative to the later learning tasks. Finally, oversampling is performed by the weighed SMOTE scheme based on SVDD boundary to not only counteract the within imbalance but also avoid the generation of any noisy or overlapped synthetic instance. Extensive comparison results on various datasets show that the proposed approach achieves statistically significant improvements in terms of different classification performance metrics relative to state-of-the-art ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
刚睡醒发布了新的文献求助10
1秒前
鱼尾蓝完成签到 ,获得积分10
2秒前
2秒前
爆米花应助激情的凌晴采纳,获得30
2秒前
欢喜代萱发布了新的文献求助10
2秒前
XYZ完成签到,获得积分10
2秒前
上官若男应助xiaowang采纳,获得10
2秒前
彭于晏应助姜姜姜姜采纳,获得10
2秒前
2秒前
王博完成签到,获得积分10
3秒前
justdoit发布了新的文献求助10
3秒前
3秒前
4秒前
小茶发布了新的文献求助10
4秒前
4秒前
5秒前
大熊发布了新的文献求助10
5秒前
cmdan完成签到,获得积分10
6秒前
6秒前
情怀应助大豆终结者采纳,获得10
6秒前
nn发布了新的文献求助10
7秒前
7秒前
7秒前
Tting完成签到 ,获得积分10
7秒前
CC给CC的求助进行了留言
8秒前
8秒前
8秒前
8秒前
nini完成签到,获得积分20
9秒前
共享精神应助小小橙采纳,获得10
10秒前
DDD完成签到 ,获得积分10
10秒前
10秒前
酷波er应助挖井的人采纳,获得10
10秒前
所所应助朝朝采纳,获得10
10秒前
脑洞疼应助漂亮的念双采纳,获得10
11秒前
11秒前
yu完成签到,获得积分10
11秒前
ACCEPT发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961