亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SVDD-based weighted oversampling technique for imbalanced and overlapped dataset learning

过采样 人工智能 支持向量机 边界判定 机器学习 班级(哲学) 边界(拓扑) 计算机科学 模式识别(心理学) 欠采样 领域(数学分析) 数学 数据挖掘 计算机网络 数学分析 带宽(计算)
作者
Xinmin Tao,Yujia Zheng,Wei Chen,Xiaohan Zhang,Qian Lin,Zhiting Fan,Shan Huang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:588: 13-51 被引量:22
标识
DOI:10.1016/j.ins.2021.12.066
摘要

Imbalanced dataset classification issue poses a major challenge on machine learning domain. Traditional supervised learning algorithms usually bias towards the majority class when handling imbalanced datasets, thus leading to poor classification results on the minority class. The learning task would become crucially difficult when there are overlapping and within-imbalance issues in imbalanced datasets, which are often the case and have been proven to severely deteriorate the classification performance relative to between-class imbalance. In this paper, we propose a novel SVDD boundary-based weighted oversampling approach (SVDDWSMOTE) for handling imbalanced and overlapped data. The proposed approach first applies support vector data description (SVDD) model with greater penalty constant for the minority class than the majority class to generate the class boundary, and then identifies those misclassified majority or few minority instances by the generated class boundary as potential overlapped or noisy ones and eliminates them. To address the within-balance issues, we propose a weight assignment strategy based on densities and the distances to the SVDD class boundary, which facilitates simultaneously combating between-class and within-class imbalance issues caused by complicated distribution. In addition, such a strategy also favors generating more synthetic minority instances for borderline and sparser instances which are usually informative to the later learning tasks. Finally, oversampling is performed by the weighed SMOTE scheme based on SVDD boundary to not only counteract the within imbalance but also avoid the generation of any noisy or overlapped synthetic instance. Extensive comparison results on various datasets show that the proposed approach achieves statistically significant improvements in terms of different classification performance metrics relative to state-of-the-art ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyp应助吴彦祖采纳,获得10
5秒前
24秒前
风不绝发布了新的文献求助10
30秒前
脑洞疼应助失眠绝音采纳,获得10
31秒前
zyp应助吴彦祖采纳,获得10
36秒前
失眠绝音完成签到,获得积分10
41秒前
风不绝完成签到,获得积分10
1分钟前
Xx完成签到 ,获得积分10
2分钟前
NCL完成签到 ,获得积分10
2分钟前
4分钟前
5分钟前
大个应助科研通管家采纳,获得100
7分钟前
滕皓轩完成签到 ,获得积分10
8分钟前
9分钟前
Raunio完成签到,获得积分10
9分钟前
哈哈哈完成签到,获得积分10
9分钟前
为为为完成签到 ,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
10分钟前
11分钟前
11分钟前
11分钟前
领导范儿应助科研通管家采纳,获得10
11分钟前
12分钟前
12分钟前
吴彦祖发布了新的文献求助10
13分钟前
万能图书馆应助点心采纳,获得10
14分钟前
牛八先生完成签到,获得积分10
14分钟前
hwen1998完成签到 ,获得积分10
14分钟前
14分钟前
111完成签到 ,获得积分10
15分钟前
科目三应助科研通管家采纳,获得10
15分钟前
大个应助科研通管家采纳,获得10
15分钟前
标致冰海完成签到 ,获得积分10
16分钟前
xiaozou55完成签到 ,获得积分10
16分钟前
17分钟前
光合作用完成签到,获得积分10
17分钟前
慕青应助wmy4617采纳,获得10
17分钟前
wangqing发布了新的文献求助20
18分钟前
18分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761004
求助须知:如何正确求助?哪些是违规求助? 3304873
关于积分的说明 10131195
捐赠科研通 3018745
什么是DOI,文献DOI怎么找? 1657800
邀请新用户注册赠送积分活动 791708
科研通“疑难数据库(出版商)”最低求助积分说明 754552