SVDD-based weighted oversampling technique for imbalanced and overlapped dataset learning

过采样 人工智能 支持向量机 边界判定 机器学习 班级(哲学) 边界(拓扑) 计算机科学 模式识别(心理学) 欠采样 领域(数学分析) 数学 数据挖掘 计算机网络 数学分析 带宽(计算)
作者
Xinmin Tao,Yujia Zheng,Wei Chen,Xiaohan Zhang,Qian Lin,Zhiting Fan,Shan Huang
出处
期刊:Information Sciences [Elsevier]
卷期号:588: 13-51 被引量:22
标识
DOI:10.1016/j.ins.2021.12.066
摘要

Imbalanced dataset classification issue poses a major challenge on machine learning domain. Traditional supervised learning algorithms usually bias towards the majority class when handling imbalanced datasets, thus leading to poor classification results on the minority class. The learning task would become crucially difficult when there are overlapping and within-imbalance issues in imbalanced datasets, which are often the case and have been proven to severely deteriorate the classification performance relative to between-class imbalance. In this paper, we propose a novel SVDD boundary-based weighted oversampling approach (SVDDWSMOTE) for handling imbalanced and overlapped data. The proposed approach first applies support vector data description (SVDD) model with greater penalty constant for the minority class than the majority class to generate the class boundary, and then identifies those misclassified majority or few minority instances by the generated class boundary as potential overlapped or noisy ones and eliminates them. To address the within-balance issues, we propose a weight assignment strategy based on densities and the distances to the SVDD class boundary, which facilitates simultaneously combating between-class and within-class imbalance issues caused by complicated distribution. In addition, such a strategy also favors generating more synthetic minority instances for borderline and sparser instances which are usually informative to the later learning tasks. Finally, oversampling is performed by the weighed SMOTE scheme based on SVDD boundary to not only counteract the within imbalance but also avoid the generation of any noisy or overlapped synthetic instance. Extensive comparison results on various datasets show that the proposed approach achieves statistically significant improvements in terms of different classification performance metrics relative to state-of-the-art ones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲜艳的无极完成签到,获得积分20
刚刚
乔尔司空完成签到,获得积分10
刚刚
拼搏迎梦完成签到,获得积分10
刚刚
tamaco完成签到,获得积分10
刚刚
一二完成签到,获得积分10
刚刚
红星路吃饼子的派大星完成签到 ,获得积分10
刚刚
shijin完成签到,获得积分10
刚刚
WZH完成签到,获得积分10
1秒前
1秒前
旺仔先生完成签到,获得积分0
1秒前
Scout完成签到,获得积分10
1秒前
XW完成签到,获得积分10
2秒前
啾比文完成签到,获得积分10
2秒前
wanci应助ferritin采纳,获得10
2秒前
烟花应助ferritin采纳,获得10
2秒前
lalala发布了新的文献求助10
2秒前
土豪的听筠完成签到,获得积分10
3秒前
min20210429完成签到,获得积分10
3秒前
4秒前
落寞天玉完成签到,获得积分10
4秒前
zik应助已秃采纳,获得10
5秒前
Akim应助tjnusq采纳,获得10
5秒前
七月完成签到,获得积分10
5秒前
5秒前
silin完成签到,获得积分10
5秒前
李雨完成签到,获得积分10
6秒前
6秒前
Ava应助英俊亦巧采纳,获得20
6秒前
xz完成签到,获得积分10
6秒前
guozi完成签到,获得积分10
7秒前
吴欢欢完成签到,获得积分10
7秒前
烂漫煎饼完成签到,获得积分10
7秒前
逸翎完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助20
8秒前
AH完成签到 ,获得积分10
8秒前
阿福完成签到,获得积分10
8秒前
coke完成签到,获得积分10
8秒前
8秒前
着急的豁完成签到,获得积分10
9秒前
典雅绮兰完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959