SVDD-based weighted oversampling technique for imbalanced and overlapped dataset learning

过采样 人工智能 支持向量机 边界判定 机器学习 班级(哲学) 边界(拓扑) 计算机科学 模式识别(心理学) 欠采样 领域(数学分析) 数学 数据挖掘 计算机网络 数学分析 带宽(计算)
作者
Xinmin Tao,Yujia Zheng,Wei Chen,Xiaohan Zhang,Qian Lin,Zhiting Fan,Shan Huang
出处
期刊:Information Sciences [Elsevier]
卷期号:588: 13-51 被引量:22
标识
DOI:10.1016/j.ins.2021.12.066
摘要

Imbalanced dataset classification issue poses a major challenge on machine learning domain. Traditional supervised learning algorithms usually bias towards the majority class when handling imbalanced datasets, thus leading to poor classification results on the minority class. The learning task would become crucially difficult when there are overlapping and within-imbalance issues in imbalanced datasets, which are often the case and have been proven to severely deteriorate the classification performance relative to between-class imbalance. In this paper, we propose a novel SVDD boundary-based weighted oversampling approach (SVDDWSMOTE) for handling imbalanced and overlapped data. The proposed approach first applies support vector data description (SVDD) model with greater penalty constant for the minority class than the majority class to generate the class boundary, and then identifies those misclassified majority or few minority instances by the generated class boundary as potential overlapped or noisy ones and eliminates them. To address the within-balance issues, we propose a weight assignment strategy based on densities and the distances to the SVDD class boundary, which facilitates simultaneously combating between-class and within-class imbalance issues caused by complicated distribution. In addition, such a strategy also favors generating more synthetic minority instances for borderline and sparser instances which are usually informative to the later learning tasks. Finally, oversampling is performed by the weighed SMOTE scheme based on SVDD boundary to not only counteract the within imbalance but also avoid the generation of any noisy or overlapped synthetic instance. Extensive comparison results on various datasets show that the proposed approach achieves statistically significant improvements in terms of different classification performance metrics relative to state-of-the-art ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
大个应助66采纳,获得10
3秒前
万言发布了新的文献求助10
5秒前
传奇3应助坐井观天的蛙采纳,获得10
7秒前
8秒前
诠释完成签到 ,获得积分10
9秒前
10秒前
FYY发布了新的文献求助10
11秒前
sun1111发布了新的文献求助30
14秒前
FashionBoy应助renovel采纳,获得10
14秒前
子车茗应助fkalltn采纳,获得30
14秒前
14秒前
18秒前
魁梧的海秋应助lyh采纳,获得10
18秒前
小二郎应助lyh采纳,获得10
18秒前
19秒前
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
甜甜玫瑰应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
甜甜玫瑰应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得10
20秒前
judy007应助科研通管家采纳,获得10
20秒前
HCLonely应助科研通管家采纳,获得10
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
HCLonely应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得20
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240609
求助须知:如何正确求助?哪些是违规求助? 2885398
关于积分的说明 8238210
捐赠科研通 2553757
什么是DOI,文献DOI怎么找? 1381860
科研通“疑难数据库(出版商)”最低求助积分说明 649371
邀请新用户注册赠送积分活动 625009