极端紫外线
极紫外光刻
波长
离子
原子物理学
不透明度
物理
计算物理学
电离
等离子体
光学
激光器
量子力学
作者
Akira Sasaki,Keisuke Fujii,I. Murakami,Hiroyuki Sakaue,Takeshi Nishikawa,Hayato Ohashi,Nobuyuki Nakamura
出处
期刊:AIP Advances
[American Institute of Physics]
日期:2022-02-01
卷期号:12 (2)
被引量:2
摘要
This paper proposes a method to determine the wavelength of unresolved transition arrays (UTAs) in the extreme ultraviolet (EUV) wavelength region from Sn to Hf plasma by combining calculated and experimental data. Based on a computational analysis of the atomic structure, we show that the wavelength of UTAs can be explained using the screening theory by a simple quadratic formula using the effective core charge and the screening constant for 4d electrons as parameters. The results from the model were compared with experiments to reproduce the trend of the spectrum, which has a minimum wavelength with respect to the ion charge. The wavelength is shown to agree with experiment over Pd- to Sr-like ions by applying a small shift that was determined using the spectrum observed in the electron beam ion trap. The present model would allow us to calculate the opacity of Sn plasmas with much smaller computational time than using present large-scale collisional radiative models, with fewer energy levels and parameterized rate coefficients, which will be also useful to investigate the efficiency of the EUV light source.
科研通智能强力驱动
Strongly Powered by AbleSci AI