Superior peroxidase mimetic activity induced by topological surface states of Weyl semimetal WTe2

电子转移 基质(水族馆) 纳米材料 催化作用 半金属 纳米技术 拓扑(电路) 材料科学 原子轨道 Dirac(视频压缩格式) 化学 电子 光化学 物理 光电子学 有机化学 带隙 数学 量子力学 地质学 组合数学 海洋学 中微子
作者
Yuan Chen,Yan He,Huakai Xu,Chun Du,Xiaoju Wu,Guowei Yang
出处
期刊:Nano Today [Elsevier]
卷期号:43: 101421-101421 被引量:18
标识
DOI:10.1016/j.nantod.2022.101421
摘要

Nanozymes, as promising alternatives that integrate the advantage of natural enzymes and nanomaterials are attracted enormous interest due to their low cost, environmental tolerance, high stability, as well as significant catalytic activity. Two-dimensional materials, transition metal dichalcogenides (TMDs) harbor the potential as peroxidase mimic which is attributed to the active edge sites and surface electron transfer capability. However, a challenge faced in peroxidase mimetic of TMDs is the low catalytic activity which originates from the inert structures. Here, we, for the first time, report that the typical Weyl semimetal WTe2 possesses the superior peroxidase-like performance toward H2O2, which derives from the two-step electron-pathway. We demonstrate a novel functionality of the Weyl semimetal through introducing topologically protected surface states (TSSs) for regulating the electron transfer processes. The underlying mechanism for TSSs promoting enzyme mimetic catalysis is attributed to the effective electron bath provided by the robust TSSs. Experiments and the first-principles calculations show that TSSs of WTe2 which serve as effective electron baths are directly involved in the two-step electron transfer process. In the first step, TSSs accept the electrons donated by the substrate which further enhances the substrate's absorption. Upon H2O2 adsorption, the electrons are transferred out of TSSs and injected into the absorbed H2O2 orbitals. These findings offer a new linkage between the topological matters with TSSs and nanomaterials for enzyme mimicking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
通达完成签到,获得积分10
1秒前
FashionBoy应助猪猪hero采纳,获得10
1秒前
jy发布了新的文献求助10
1秒前
祥云完成签到,获得积分10
1秒前
无敌鱼完成签到,获得积分10
2秒前
ffu完成签到 ,获得积分10
2秒前
天天快乐应助好的采纳,获得10
2秒前
2秒前
香蕉觅云应助科研小白花采纳,获得10
2秒前
18746005898发布了新的文献求助10
3秒前
科研通AI5应助fanfan44390采纳,获得10
3秒前
3秒前
3秒前
小刺猬完成签到,获得积分10
3秒前
小庄发布了新的文献求助10
3秒前
唐人雄发布了新的文献求助10
4秒前
英姑应助Khr1stINK采纳,获得10
4秒前
爆米花应助甜筒采纳,获得10
4秒前
Gang完成签到,获得积分10
4秒前
调研昵称发布了新的文献求助10
5秒前
Hello应助潇洒的青采纳,获得10
5秒前
5秒前
共享精神应助长孙归尘采纳,获得10
5秒前
6秒前
Evan123发布了新的文献求助10
6秒前
7秒前
xctdyl1992发布了新的文献求助10
7秒前
7秒前
Su完成签到,获得积分10
7秒前
俗丨完成签到,获得积分10
8秒前
科研通AI5应助海底落日采纳,获得30
8秒前
8秒前
CodeCraft应助纯真忆安采纳,获得10
8秒前
顺顺发布了新的文献求助10
8秒前
8秒前
9秒前
nan完成签到,获得积分10
9秒前
9秒前
自信的叫兽完成签到,获得积分10
9秒前
淡然老太完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794