The Utility of Breath Analysis in the Diagnosis and Staging of Parkinson’s Disease

医学 气体分析呼吸 帕金森病 队列 呼吸试验 疾病 内科学 解剖 幽门螺杆菌
作者
Simon Stott,Yoav Y. Broza,Alaa Gharra,Zhen Wang,Roger A. Barker,Hossam Haick
出处
期刊:Journal of Parkinson's disease [IOS Press]
卷期号:12 (3): 993-1002 被引量:6
标识
DOI:10.3233/jpd-213133
摘要

Background: The analysis of volatile organic compounds (VOCs) collected in breath samples has the potential to be a rapid, non-invasive test to aid in the clinical diagnosis and tracking of chronic conditions such as Parkinson’s disease (PD). Objective: To assess the feasibility and utility of breath sample analysis done, both at point of collection in clinic and when sent away to be analyzed remotely, to diagnose, stratify and monitor disease course in a moderately large cohort of patients with PD. Methods: Breath samples were collected from 177 people with PD and 37 healthy matched control individuals followed over time. Standard clinical data (MDS-UPDRS & cognitive assessments) from the PD patients were collected at the same time as the breath sample was taken, these measures were then correlated with the breath test analysis of exhaled VOCs. Results: The breath test was able to distinguish patients with PD from healthy control participants and correlated with disease stage. The off-line system (remote analysis) gave good results with overall classification accuracies across a range of clinical measures of between 73.6% to 95.6%. The on-line (in clinic) system showed comparable results but with lower levels of correlation, varying between 33.5% to 82.4%. Chemical analysis identified 29 potential molecules that were different and which may relate to pathogenic pathways in PD. Conclusion: Breath analysis shows potential for PD diagnostics and monitoring. Both off-line and on-line sensor systems were easy to do and provided comparable results which will enable this technique to be easily adopted in clinic if larger studies confirm our findings.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小樁发布了新的文献求助10
2秒前
yangminmin发布了新的文献求助10
2秒前
megamind完成签到,获得积分10
3秒前
风清扬发布了新的文献求助10
3秒前
乔乔完成签到,获得积分10
4秒前
qiuqiu815777完成签到,获得积分10
4秒前
4秒前
7秒前
欣喜战斗机完成签到,获得积分10
8秒前
爆米花应助犹豫的靖仇采纳,获得10
8秒前
provin发布了新的文献求助10
9秒前
9秒前
MrH发布了新的文献求助10
10秒前
11秒前
11秒前
LL完成签到,获得积分10
12秒前
科目三应助风清扬采纳,获得10
13秒前
888发布了新的文献求助20
13秒前
刘鸿雁发布了新的文献求助10
15秒前
LATP发布了新的文献求助10
16秒前
roxy完成签到,获得积分10
17秒前
苗条秋荷完成签到,获得积分10
21秒前
CipherSage应助刘鸿雁采纳,获得10
22秒前
一部船完成签到 ,获得积分10
23秒前
大个应助田静然采纳,获得10
24秒前
平淡爆米花完成签到,获得积分10
24秒前
在水一方应助888采纳,获得10
25秒前
小樁完成签到,获得积分10
27秒前
29秒前
风趣凝荷完成签到 ,获得积分10
29秒前
科研通AI6.1应助文献狗采纳,获得10
30秒前
pluto应助provin采纳,获得10
30秒前
30秒前
DJ发布了新的文献求助20
31秒前
31秒前
gln完成签到 ,获得积分10
32秒前
32秒前
sci大户发布了新的文献求助10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877742
求助须知:如何正确求助?哪些是违规求助? 6545170
关于积分的说明 15682078
捐赠科研通 4996405
什么是DOI,文献DOI怎么找? 2692689
邀请新用户注册赠送积分活动 1634723
关于科研通互助平台的介绍 1592383