The Utility of Breath Analysis in the Diagnosis and Staging of Parkinson’s Disease

医学 气体分析呼吸 帕金森病 队列 呼吸试验 疾病 内科学 解剖 幽门螺杆菌
作者
Simon Stott,Yoav Y. Broza,Alaa Gharra,Zhen Wang,Roger A. Barker,Hossam Haick
出处
期刊:Journal of Parkinson's disease [IOS Press]
卷期号:12 (3): 993-1002 被引量:6
标识
DOI:10.3233/jpd-213133
摘要

Background: The analysis of volatile organic compounds (VOCs) collected in breath samples has the potential to be a rapid, non-invasive test to aid in the clinical diagnosis and tracking of chronic conditions such as Parkinson’s disease (PD). Objective: To assess the feasibility and utility of breath sample analysis done, both at point of collection in clinic and when sent away to be analyzed remotely, to diagnose, stratify and monitor disease course in a moderately large cohort of patients with PD. Methods: Breath samples were collected from 177 people with PD and 37 healthy matched control individuals followed over time. Standard clinical data (MDS-UPDRS & cognitive assessments) from the PD patients were collected at the same time as the breath sample was taken, these measures were then correlated with the breath test analysis of exhaled VOCs. Results: The breath test was able to distinguish patients with PD from healthy control participants and correlated with disease stage. The off-line system (remote analysis) gave good results with overall classification accuracies across a range of clinical measures of between 73.6% to 95.6%. The on-line (in clinic) system showed comparable results but with lower levels of correlation, varying between 33.5% to 82.4%. Chemical analysis identified 29 potential molecules that were different and which may relate to pathogenic pathways in PD. Conclusion: Breath analysis shows potential for PD diagnostics and monitoring. Both off-line and on-line sensor systems were easy to do and provided comparable results which will enable this technique to be easily adopted in clinic if larger studies confirm our findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yawngale发布了新的文献求助10
1秒前
mouxq发布了新的文献求助10
2秒前
小二郎应助雪糕采纳,获得10
3秒前
张浩远发布了新的文献求助10
3秒前
感谢wsc转发科研通微信,获得积分50
4秒前
笨笨的弱完成签到,获得积分10
4秒前
明理的天蓝完成签到,获得积分20
4秒前
palmora0829完成签到,获得积分10
4秒前
skxxxxxx完成签到,获得积分10
5秒前
5秒前
5秒前
大方的若山完成签到,获得积分10
6秒前
山水之乐发布了新的文献求助10
6秒前
lianhe关注了科研通微信公众号
6秒前
麋鹿完成签到,获得积分20
7秒前
小懿完成签到,获得积分10
7秒前
mouxq完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
科研通AI5应助旭日采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
mtt应助科研通管家采纳,获得20
12秒前
西啃发布了新的文献求助10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
Owen应助2023204306324采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934001
求助须知:如何正确求助?哪些是违规求助? 4202038
关于积分的说明 13055784
捐赠科研通 3976153
什么是DOI,文献DOI怎么找? 2178833
邀请新用户注册赠送积分活动 1195113
关于科研通互助平台的介绍 1106495