亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Utility of Breath Analysis in the Diagnosis and Staging of Parkinson’s Disease

医学 气体分析呼吸 帕金森病 队列 呼吸试验 疾病 内科学 解剖 幽门螺杆菌
作者
Simon Stott,Yoav Y. Broza,Alaa Gharra,Zhen Wang,Roger A. Barker,Hossam Haick
出处
期刊:Journal of Parkinson's disease [IOS Press]
卷期号:12 (3): 993-1002 被引量:6
标识
DOI:10.3233/jpd-213133
摘要

Background: The analysis of volatile organic compounds (VOCs) collected in breath samples has the potential to be a rapid, non-invasive test to aid in the clinical diagnosis and tracking of chronic conditions such as Parkinson’s disease (PD). Objective: To assess the feasibility and utility of breath sample analysis done, both at point of collection in clinic and when sent away to be analyzed remotely, to diagnose, stratify and monitor disease course in a moderately large cohort of patients with PD. Methods: Breath samples were collected from 177 people with PD and 37 healthy matched control individuals followed over time. Standard clinical data (MDS-UPDRS & cognitive assessments) from the PD patients were collected at the same time as the breath sample was taken, these measures were then correlated with the breath test analysis of exhaled VOCs. Results: The breath test was able to distinguish patients with PD from healthy control participants and correlated with disease stage. The off-line system (remote analysis) gave good results with overall classification accuracies across a range of clinical measures of between 73.6% to 95.6%. The on-line (in clinic) system showed comparable results but with lower levels of correlation, varying between 33.5% to 82.4%. Chemical analysis identified 29 potential molecules that were different and which may relate to pathogenic pathways in PD. Conclusion: Breath analysis shows potential for PD diagnostics and monitoring. Both off-line and on-line sensor systems were easy to do and provided comparable results which will enable this technique to be easily adopted in clinic if larger studies confirm our findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
11秒前
20秒前
天才小能喵完成签到 ,获得积分0
25秒前
科研搬运工完成签到,获得积分10
25秒前
白瓜完成签到 ,获得积分10
30秒前
46秒前
49秒前
1分钟前
1分钟前
1分钟前
华仔应助科研通管家采纳,获得30
3分钟前
3分钟前
clock完成签到 ,获得积分10
3分钟前
4分钟前
三井库里发布了新的文献求助10
4分钟前
Krim完成签到 ,获得积分10
4分钟前
4分钟前
天天快乐应助三井库里采纳,获得10
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
打打应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
沉静盼易发布了新的文献求助10
5分钟前
Yportne发布了新的文献求助10
5分钟前
沉静盼易完成签到,获得积分10
5分钟前
彭于晏应助科研通管家采纳,获得10
7分钟前
科研通AI5应助老实松鼠采纳,获得10
7分钟前
7分钟前
老实松鼠发布了新的文献求助10
7分钟前
此话当真完成签到,获得积分10
7分钟前
8分钟前
8分钟前
CodeCraft应助柚子采纳,获得10
8分钟前
Benhnhk21完成签到,获得积分10
8分钟前
ok完成签到,获得积分10
8分钟前
ok发布了新的文献求助10
8分钟前
豆豆发布了新的文献求助10
9分钟前
9分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477466
求助须知:如何正确求助?哪些是违规求助? 3068936
关于积分的说明 9110158
捐赠科研通 2760379
什么是DOI,文献DOI怎么找? 1514880
邀请新用户注册赠送积分活动 700483
科研通“疑难数据库(出版商)”最低求助积分说明 699604