Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Using CNN Based on Multiparametric MRI

医学 接收机工作特性 磁共振成像 乳腺癌 精确检验 放射科 曲线下面积 核医学 癌症 外科 内科学 药代动力学
作者
Zijian Wang,Hang Sun,Jing Li,Jing Chen,Fancong Meng,Hong Li,Lu Han,Shi Zhou,Tao Yu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (3): 700-709 被引量:22
标识
DOI:10.1002/jmri.28082
摘要

Background Multiparametric magnetic resonance imaging (MRI) is widely used in breast cancer screening. Accurate prediction of the axillary lymph nodes metastasis (ALNM) is essential for breast cancer surgery and treatment. However, there is no mature and effective discerning method for ALNM based on multiparametric MRI. Purpose To evaluate the ALNM using T1‐weighted imaging (T1WI), T2‐weighted imaging (T2WI), and diffusion‐weighted imaging (DWI) sequences, respectively, and construct a quantitative ALNM discerning model of integrated multiparametric MRI. Study Type Retrospective. Population Three‐hundred forty‐eight breast cancer patients, 163 with ALNM (99.39% females), and 185 without ALNM (100% females). The dataset was randomly divided into the training set (315 cases) and the testing set (33 cases). Field Strength/Sequence 1.5 T; T1WI (VIBRANT), T2WI (FSE), and DWI (echo planar imaging [EPI]). Assessment The lesion region of interest images were cropped and sent to a pretrained ResNet50 network. Then, the results of different sequences were sent to a classifier for ensemble learning to construct the ALNM model of multiparametric MRI. Statistical Tests Performance indicators such as accuracy, the receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC) were calculated. Student's t ‐test, chi‐square test, Fisher's exact test, and Delong test were performed, and P < 0.05 was considered statistically significant. Results T2WI performed the best among the three sequences, and achieved the accuracy and AUC of 0.933/0.989 in the testing set. Compared to T1WI with the accuracy and AUC of 0.691/0.806, the increase is significant. While compared to DWI with the accuracy and AUC of 0.800/0.910, the improvement is not significant ( P = 0.126). After integrating three sequences, the accuracy and AUC improved to 0.970 and 0.996. Data Conclusion T2WI performed better than DWI and T1WI in discerning ALNM in this breast cancer dataset. The proposed quantitative model of integrated multiparametric MRI could effectively help the ALNM diagnosis. Level of Evidence 1 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月儿发布了新的文献求助10
刚刚
落落完成签到 ,获得积分10
刚刚
羊羊完成签到 ,获得积分20
刚刚
宁听白发布了新的文献求助10
1秒前
rookie_b0完成签到,获得积分10
1秒前
1秒前
wangyanyan完成签到,获得积分20
1秒前
标致小伙完成签到,获得积分10
2秒前
2秒前
Harlotte发布了新的文献求助10
3秒前
3秒前
潦草发布了新的文献求助10
3秒前
丘比特应助Ll采纳,获得10
4秒前
4秒前
yu完成签到 ,获得积分10
4秒前
小蘑菇应助zzznznnn采纳,获得10
4秒前
Orange应助俊秀的白猫采纳,获得30
5秒前
深情安青应助小可采纳,获得10
5秒前
5秒前
情怀应助pearl采纳,获得10
5秒前
6秒前
所所应助cybbbbbb采纳,获得10
6秒前
果汁发布了新的文献求助10
6秒前
7秒前
7秒前
Lucas应助柚子采纳,获得10
7秒前
MADKAI发布了新的文献求助10
7秒前
8秒前
爆米花应助咕咕咕采纳,获得10
8秒前
zxy发布了新的文献求助10
8秒前
9秒前
醉人的仔发布了新的文献求助10
9秒前
daguan完成签到,获得积分10
9秒前
桐桐应助nikai采纳,获得10
9秒前
10秒前
11秒前
123完成签到,获得积分10
11秒前
善良香岚发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759