Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Using CNN Based on Multiparametric MRI

医学 接收机工作特性 磁共振成像 乳腺癌 精确检验 放射科 曲线下面积 核医学 癌症 外科 内科学 药代动力学
作者
Zijian Wang,Hang Sun,Jing Li,Jing Chen,Fancong Meng,Hong Li,Lu Han,Shi Zhou,Tao Yu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (3): 700-709 被引量:22
标识
DOI:10.1002/jmri.28082
摘要

Background Multiparametric magnetic resonance imaging (MRI) is widely used in breast cancer screening. Accurate prediction of the axillary lymph nodes metastasis (ALNM) is essential for breast cancer surgery and treatment. However, there is no mature and effective discerning method for ALNM based on multiparametric MRI. Purpose To evaluate the ALNM using T1‐weighted imaging (T1WI), T2‐weighted imaging (T2WI), and diffusion‐weighted imaging (DWI) sequences, respectively, and construct a quantitative ALNM discerning model of integrated multiparametric MRI. Study Type Retrospective. Population Three‐hundred forty‐eight breast cancer patients, 163 with ALNM (99.39% females), and 185 without ALNM (100% females). The dataset was randomly divided into the training set (315 cases) and the testing set (33 cases). Field Strength/Sequence 1.5 T; T1WI (VIBRANT), T2WI (FSE), and DWI (echo planar imaging [EPI]). Assessment The lesion region of interest images were cropped and sent to a pretrained ResNet50 network. Then, the results of different sequences were sent to a classifier for ensemble learning to construct the ALNM model of multiparametric MRI. Statistical Tests Performance indicators such as accuracy, the receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC) were calculated. Student's t ‐test, chi‐square test, Fisher's exact test, and Delong test were performed, and P < 0.05 was considered statistically significant. Results T2WI performed the best among the three sequences, and achieved the accuracy and AUC of 0.933/0.989 in the testing set. Compared to T1WI with the accuracy and AUC of 0.691/0.806, the increase is significant. While compared to DWI with the accuracy and AUC of 0.800/0.910, the improvement is not significant ( P = 0.126). After integrating three sequences, the accuracy and AUC improved to 0.970 and 0.996. Data Conclusion T2WI performed better than DWI and T1WI in discerning ALNM in this breast cancer dataset. The proposed quantitative model of integrated multiparametric MRI could effectively help the ALNM diagnosis. Level of Evidence 1 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
1秒前
顾矜应助挽倾颜采纳,获得10
1秒前
1秒前
1秒前
小咩发布了新的文献求助10
2秒前
lxl完成签到 ,获得积分10
2秒前
辛勤的掏粪工完成签到,获得积分10
2秒前
充电宝应助缓慢太君采纳,获得10
2秒前
2秒前
千朝词完成签到,获得积分10
3秒前
4秒前
程十二发布了新的文献求助10
4秒前
爆米花应助光亮语梦采纳,获得10
4秒前
shan完成签到,获得积分10
5秒前
自然完成签到,获得积分10
5秒前
万能图书馆应助zhangyuan采纳,获得10
5秒前
英姑应助温柔的冰香采纳,获得10
6秒前
6秒前
6秒前
汀上白沙发布了新的文献求助10
6秒前
千朝词发布了新的文献求助10
7秒前
7秒前
CGFHEMAN完成签到 ,获得积分10
7秒前
8秒前
8秒前
xialei发布了新的文献求助30
8秒前
8秒前
夏至完成签到,获得积分20
9秒前
cxh完成签到,获得积分10
9秒前
Zorn发布了新的文献求助10
11秒前
11秒前
科研通AI2S应助小咩采纳,获得10
11秒前
科研通AI2S应助小咩采纳,获得10
11秒前
饭团和阿毛完成签到,获得积分10
12秒前
111111发布了新的文献求助10
12秒前
冷静无心完成签到,获得积分20
13秒前
在水一方应助qqq采纳,获得10
13秒前
13秒前
13秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218586
求助须知:如何正确求助?哪些是违规求助? 2867716
关于积分的说明 8157958
捐赠科研通 2534732
什么是DOI,文献DOI怎么找? 1367178
科研通“疑难数据库(出版商)”最低求助积分说明 644960
邀请新用户注册赠送积分活动 618144