Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Using CNN Based on Multiparametric MRI

医学 接收机工作特性 磁共振成像 乳腺癌 精确检验 放射科 曲线下面积 核医学 癌症 外科 内科学 药代动力学
作者
Zijian Wang,Hang Sun,Jing Li,Jing Chen,Fancong Meng,Hong Li,Lu Han,Shi Zhou,Tao Yu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (3): 700-709 被引量:22
标识
DOI:10.1002/jmri.28082
摘要

Background Multiparametric magnetic resonance imaging (MRI) is widely used in breast cancer screening. Accurate prediction of the axillary lymph nodes metastasis (ALNM) is essential for breast cancer surgery and treatment. However, there is no mature and effective discerning method for ALNM based on multiparametric MRI. Purpose To evaluate the ALNM using T1‐weighted imaging (T1WI), T2‐weighted imaging (T2WI), and diffusion‐weighted imaging (DWI) sequences, respectively, and construct a quantitative ALNM discerning model of integrated multiparametric MRI. Study Type Retrospective. Population Three‐hundred forty‐eight breast cancer patients, 163 with ALNM (99.39% females), and 185 without ALNM (100% females). The dataset was randomly divided into the training set (315 cases) and the testing set (33 cases). Field Strength/Sequence 1.5 T; T1WI (VIBRANT), T2WI (FSE), and DWI (echo planar imaging [EPI]). Assessment The lesion region of interest images were cropped and sent to a pretrained ResNet50 network. Then, the results of different sequences were sent to a classifier for ensemble learning to construct the ALNM model of multiparametric MRI. Statistical Tests Performance indicators such as accuracy, the receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC) were calculated. Student's t ‐test, chi‐square test, Fisher's exact test, and Delong test were performed, and P < 0.05 was considered statistically significant. Results T2WI performed the best among the three sequences, and achieved the accuracy and AUC of 0.933/0.989 in the testing set. Compared to T1WI with the accuracy and AUC of 0.691/0.806, the increase is significant. While compared to DWI with the accuracy and AUC of 0.800/0.910, the improvement is not significant ( P = 0.126). After integrating three sequences, the accuracy and AUC improved to 0.970 and 0.996. Data Conclusion T2WI performed better than DWI and T1WI in discerning ALNM in this breast cancer dataset. The proposed quantitative model of integrated multiparametric MRI could effectively help the ALNM diagnosis. Level of Evidence 1 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sciiiiii发布了新的文献求助10
刚刚
乒坛巨人发布了新的文献求助10
刚刚
阑悦关注了科研通微信公众号
刚刚
英俊的铭应助明天会更好采纳,获得10
刚刚
1秒前
1秒前
2秒前
Newt完成签到,获得积分10
2秒前
aaa发布了新的文献求助10
4秒前
5秒前
6秒前
反杀闰土的猹完成签到,获得积分10
6秒前
6秒前
Xieyusen发布了新的文献求助10
6秒前
芒芒发布了新的文献求助30
7秒前
开放惜寒发布了新的文献求助10
7秒前
9秒前
荒年完成签到,获得积分10
10秒前
aaa完成签到,获得积分20
11秒前
慕青应助冷傲天川采纳,获得10
11秒前
11秒前
12秒前
好运接收集成器完成签到,获得积分20
13秒前
14秒前
sciDoge完成签到,获得积分10
14秒前
15秒前
Bryan应助林狗采纳,获得10
15秒前
深情安青应助乒坛巨人采纳,获得10
16秒前
机智的邪欢完成签到,获得积分10
16秒前
大观天下完成签到,获得积分10
17秒前
anna发布了新的文献求助10
17秒前
张若旸完成签到 ,获得积分10
18秒前
阿呆在发呆完成签到,获得积分10
19秒前
深情安青应助无奈的远望采纳,获得10
19秒前
19秒前
wang11完成签到,获得积分20
19秒前
s_chui发布了新的文献求助10
20秒前
Amon完成签到 ,获得积分10
20秒前
huajinoob发布了新的文献求助10
20秒前
脑洞疼应助大观天下采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966989
求助须知:如何正确求助?哪些是违规求助? 3512429
关于积分的说明 11163148
捐赠科研通 3247241
什么是DOI,文献DOI怎么找? 1793778
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432