Nanostructured Electrode Enabling Fast and Fully Reversible MnO2-to-Mn2+ Conversion in Mild Buffered Aqueous Electrolytes

重量分析 水溶液 电解质 化学 电极 分析化学(期刊) 物理化学 色谱法 有机化学
作者
Mickaël Mateos,Kenneth D. Harris,Benoı̂t Limoges,Véronique Balland
标识
DOI:10.26434/chemrxiv.12111483
摘要

On account of their low-cost, earth abundance, eco-sustainability, and high theoretical charge storage capacity, MnO<sub>2</sub> cathodes have attracted a renewed interest in the development of rechargeable aqueous batteries. However, they currently suffer from limited gravimetric capacities when operating under the preferred mild aqueous conditions, which leads to lower performance as compared to similar devices operating in strongly acidic or basic conditions. Here, we demonstrate how to overcome this limitation by combining a well-defined 3D nanostructured conductive electrode, which ensures an efficient reversible MnO<sub>2</sub>-to-Mn<sup>2+</sup> conversion reaction, with a mild acid buffered electrolyte (pH 5). A reversible gravimetric capacity of 560 mA·h·g<sup>-1</sup> (close to the maximal theoretical capacity of 574 mA·h·g<sup>-1</sup> estimated from the MnO<sub>2</sub> average oxidation state of 3.86) was obtained over rates ranging from 1 to 10 A·g<sup>-1</sup>. The rate capability was also remarkable, demonstrating a capacity retention of 435 mA·h·g<sup>-1</sup> at a rate of 110 A·g<sup>-1</sup>. These good performances have been attributed to optimal regulation of the mass transport and electronic transfer between the three process actors, <i>i.e.</i> the 3D conductive scaffold, the MnO<sub>2</sub> active material filling it, and the soluble species involved in the reversible conversion reaction. Additionally, the high reversibility and cycling stability of this conversion reaction is demonstrated over 900 cycles with a Coulombic efficiency > 99.4 % at a rate of 44 A·g<sup>-1</sup>. Besides these good performances, also demonstrated in a Zn/MnO<sub>2</sub> cell configuration, we discuss the key parameters governing the efficiency of the MnO<sub>2</sub>-to-Mn<sup>2+</sup> conversion. Overall, the present study provides a comprehensive framework for the rational design and optimization of MnO<sub>2</sub> cathodes involved in rechargeable mild aqueous batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
八佰完成签到,获得积分10
1秒前
1秒前
xinyu完成签到 ,获得积分10
1秒前
高大代容发布了新的文献求助10
3秒前
4秒前
黄鱼面发布了新的文献求助30
6秒前
啥时候吃火锅完成签到 ,获得积分0
6秒前
果不欺然发布了新的文献求助10
6秒前
liwenwen完成签到,获得积分10
6秒前
朴素山兰完成签到,获得积分10
6秒前
联合国ffc发布了新的文献求助10
7秒前
无花果应助巴纳拉采纳,获得10
7秒前
杏花饼完成签到,获得积分10
9秒前
无聊的幻天完成签到,获得积分10
9秒前
高贵的天德完成签到,获得积分10
9秒前
ohh完成签到 ,获得积分10
10秒前
小灰完成签到,获得积分10
12秒前
12秒前
Lucas应助滴滴哒哒采纳,获得10
12秒前
12秒前
杨能能完成签到,获得积分10
14秒前
xinyu关注了科研通微信公众号
14秒前
bobo完成签到,获得积分10
14秒前
14秒前
冰夏完成签到,获得积分20
15秒前
传奇3应助小俊采纳,获得10
15秒前
阔达磬完成签到,获得积分10
16秒前
粗暴的谷云完成签到,获得积分20
16秒前
18秒前
米米米发布了新的文献求助10
18秒前
我是老大应助BY采纳,获得10
18秒前
19秒前
科研通AI5应助阔达磬采纳,获得10
19秒前
颜颜发布了新的文献求助10
19秒前
冰夏发布了新的文献求助10
19秒前
优雅的沛春完成签到 ,获得积分10
19秒前
哒哒哒完成签到,获得积分20
20秒前
Zhao完成签到 ,获得积分10
20秒前
wuyan发布了新的文献求助30
20秒前
文静的白开水完成签到,获得积分10
20秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475218
求助须知:如何正确求助?哪些是违规求助? 3067269
关于积分的说明 9103369
捐赠科研通 2758656
什么是DOI,文献DOI怎么找? 1513763
邀请新用户注册赠送积分活动 699798
科研通“疑难数据库(出版商)”最低求助积分说明 699160