Antimicrobial and Cell-Penetrating Peptides: Structure, Assembly and Mechanisms of Membrane Lysis via Atomistic and Coarse-Grained Molecular Dynamic Simulations

溶解 分子动力学 抗菌肽 生物物理学 细胞膜 化学 材料科学 纳米技术 生物化学 计算化学 生物
作者
Peter J. Bond,Syma Khalid
出处
期刊:Protein and Peptide Letters [Bentham Science]
卷期号:17 (11): 1313-1327 被引量:43
标识
DOI:10.2174/0929866511009011313
摘要

Antimicrobial peptides (AMPs) are short, cationic, membrane-interacting proteins that exhibit broad-spectrum antimicrobial activity, and are hence of significant biomedical interest. They exert their activity by selectively binding to and lysing target cell membranes, but the precise molecular details of their mechanism are not known. This is further complicated by the fact that their structural characteristics are dependent upon the local lipid environment. As a result, molecular dynamics (MD) simulations have been applied to understand the conformation and mechanism of AMPs, as well as related viral and cell-penetrating peptides. In particular, atomically detailed MD simulation studies on the timescale of tens to hundreds of nanoseconds have successfully helped to: (i) model or refine the conformation of AMPs and their aggregates in the presence of membrane-mimicking solvent mixtures, detergent micelles, and lipid bilayers; (ii) follow the process of adsorption of individual AMPs to membrane surfaces; and (iii) observe the spontaneous assembly of multiple peptides and subsequent cooperative membrane lysis. More recently, coarse-grained (CG) models have been developed to extend the time and length scales accessible to simulations of membrane/peptide systems. CG simulations on the order of microseconds have provided insight into AMP lytic mechanisms, and how they depend upon such factors as peptide concentration, lipid composition, and bilayer curvature. These studies have been supplemented by combined atomistic/ CG and integrated multiscale models. Together, simulations have deepened our understanding of the interactions between AMPs and biological membranes, and will help to design new synthetic peptides with enhanced biomedical potential.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZSJ发布了新的文献求助10
1秒前
彭于晏应助沉静怜蕾采纳,获得10
2秒前
avalon完成签到,获得积分20
2秒前
CC完成签到,获得积分10
4秒前
4秒前
zlp发布了新的文献求助30
6秒前
怕黑安发布了新的文献求助10
8秒前
隐形曼青应助ZSJ采纳,获得10
8秒前
时然完成签到 ,获得积分10
9秒前
一手灵魂完成签到,获得积分10
9秒前
我是雷锋完成签到,获得积分10
9秒前
坤坤蹦蹦跳跳完成签到,获得积分10
9秒前
皮卡丘完成签到,获得积分10
9秒前
10秒前
luym完成签到,获得积分10
10秒前
SMIRTGIRL发布了新的文献求助10
11秒前
沉静怜蕾完成签到,获得积分10
11秒前
11秒前
11秒前
pokikiii完成签到,获得积分10
12秒前
12秒前
12秒前
bkagyin应助求你了哥采纳,获得10
13秒前
13秒前
fifteen应助明理冰淇淋采纳,获得30
14秒前
14秒前
ding应助毛毛采纳,获得30
14秒前
fifteen应助幸福大白采纳,获得30
14秒前
fifteen应助幸福大白采纳,获得10
14秒前
科研通AI2S应助Chen采纳,获得10
15秒前
Leslie发布了新的文献求助10
15秒前
在水一方应助hao123采纳,获得10
16秒前
慕皙完成签到,获得积分10
17秒前
17秒前
Monday完成签到,获得积分10
17秒前
17秒前
独特觅翠应助小白果果采纳,获得10
18秒前
18秒前
勤奋花瓣发布了新的文献求助10
19秒前
小菊发布了新的文献求助10
19秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218586
求助须知:如何正确求助?哪些是违规求助? 2867716
关于积分的说明 8157958
捐赠科研通 2534732
什么是DOI,文献DOI怎么找? 1367178
科研通“疑难数据库(出版商)”最低求助积分说明 644960
邀请新用户注册赠送积分活动 618144