神经科学
突触可塑性
突触
神经系统
突触形成
生物
计算机科学
受体
生物化学
作者
Çağla Eroğlu,Ben A. Barres
出处
期刊:Nature
[Springer Nature]
日期:2010-11-01
卷期号:468 (7321): 223-231
被引量:745
摘要
The human brain contains more than 100 trillion (1014) synaptic connections, which form all of its neural circuits. Neuroscientists have long been interested in how this complex synaptic web is weaved during development and remodelled during learning and disease. Recent studies have uncovered that glial cells are important regulators of synaptic connectivity. These cells are far more active than was previously thought and are powerful controllers of synapse formation, function, plasticity and elimination, both in health and disease. Understanding how signalling between glia and neurons regulates synaptic development will offer new insight into how the nervous system works and provide new targets for the treatment of neurological diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI