Enhanced HTS Hit Selection via a Local Hit Rate Analysis

选择(遗传算法) 计算机科学 人工智能
作者
Bruce A. Posner,Hualin Simon Xi,James E. Mills
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:49 (10): 2202-2210 被引量:47
标识
DOI:10.1021/ci900113d
摘要

The postprocessing of high-throughput screening (HTS) results is complicated by the occurrence of false positives (inactive compounds misidentified as active by the primary screen) and false negatives (active compounds misidentified as inactive by the primary screen). An activity cutoff is frequently used to select "active" compounds from HTS data; however, this approach is insensitive to both false positives and false negatives. An alternative method that can minimize the occurrence of these artifacts will increase the efficiency of hit selection and therefore lead discovery. In this work, rather than merely using the activity of a given compound, we look at the presence and absence of activity among all compounds in its "chemical space neighborhood" to give a degree of confidence in its activity. We demonstrate that this local hit rate (LHR) analysis method outperforms hit selection based on ranking by primary screen activity values across ten diverse high throughput screens, spanning both cell-based and biochemical assay formats of varying biology and robustness. On average, the local hit rate analysis method was ∼2.3-fold and ∼1.3-fold more effective in identifying active compounds and active chemical series, respectively, than selection based on primary activity alone. Moreover, when applied to finding false negatives, this method was 2.3-fold better than ranking by primary activity alone. In most cases, novel hit series were identified that would have otherwise been missed. Additional uses of and observations regarding this HTS analysis approach are also discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温淼发布了新的文献求助10
刚刚
Vvvnnnaa1完成签到,获得积分10
1秒前
李福堂完成签到,获得积分10
1秒前
1秒前
。。。完成签到,获得积分10
2秒前
怜梦完成签到,获得积分10
4秒前
问你有没有发挥完成签到,获得积分10
4秒前
mit完成签到 ,获得积分10
5秒前
5秒前
onepunch发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
10秒前
乐观寻绿应助ZMH采纳,获得10
10秒前
波仔完成签到,获得积分10
12秒前
Booksiy2发布了新的文献求助10
12秒前
西川完成签到 ,获得积分10
12秒前
double ting发布了新的文献求助10
13秒前
酷波er应助寂寞的黑夜采纳,获得10
16秒前
果实发布了新的文献求助10
16秒前
wrufhg完成签到,获得积分10
17秒前
炙热芷蕊发布了新的文献求助20
17秒前
舒心梦玉完成签到,获得积分10
18秒前
CodeCraft应助neWA采纳,获得10
19秒前
19秒前
lina关注了科研通微信公众号
19秒前
领导范儿应助燕海雪采纳,获得10
21秒前
22秒前
星辰大海应助chuuuuu采纳,获得20
22秒前
泛泛之交完成签到,获得积分10
22秒前
Alisa给Alisa的求助进行了留言
22秒前
顺风顺水顺财神完成签到 ,获得积分10
23秒前
科研通AI2S应助李金金采纳,获得10
24秒前
24秒前
24秒前
付尔一笑发布了新的文献求助10
25秒前
搜集达人应助天才小熊猫采纳,获得10
27秒前
了该完成签到,获得积分10
27秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329716
求助须知:如何正确求助?哪些是违规求助? 2959333
关于积分的说明 8595189
捐赠科研通 2637764
什么是DOI,文献DOI怎么找? 1443774
科研通“疑难数据库(出版商)”最低求助积分说明 668843
邀请新用户注册赠送积分活动 656280