亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhanced HTS Hit Selection via a Local Hit Rate Analysis

选择(遗传算法) 计算机科学 人工智能
作者
Bruce A. Posner,Hualin Simon Xi,James E. Mills
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:49 (10): 2202-2210 被引量:47
标识
DOI:10.1021/ci900113d
摘要

The postprocessing of high-throughput screening (HTS) results is complicated by the occurrence of false positives (inactive compounds misidentified as active by the primary screen) and false negatives (active compounds misidentified as inactive by the primary screen). An activity cutoff is frequently used to select "active" compounds from HTS data; however, this approach is insensitive to both false positives and false negatives. An alternative method that can minimize the occurrence of these artifacts will increase the efficiency of hit selection and therefore lead discovery. In this work, rather than merely using the activity of a given compound, we look at the presence and absence of activity among all compounds in its "chemical space neighborhood" to give a degree of confidence in its activity. We demonstrate that this local hit rate (LHR) analysis method outperforms hit selection based on ranking by primary screen activity values across ten diverse high throughput screens, spanning both cell-based and biochemical assay formats of varying biology and robustness. On average, the local hit rate analysis method was ∼2.3-fold and ∼1.3-fold more effective in identifying active compounds and active chemical series, respectively, than selection based on primary activity alone. Moreover, when applied to finding false negatives, this method was 2.3-fold better than ranking by primary activity alone. In most cases, novel hit series were identified that would have otherwise been missed. Additional uses of and observations regarding this HTS analysis approach are also discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
ljy完成签到 ,获得积分10
17秒前
18秒前
20秒前
星辰大海应助畅快甜瓜采纳,获得10
20秒前
32秒前
34秒前
38秒前
43秒前
45秒前
weibo完成签到,获得积分10
51秒前
53秒前
59秒前
1分钟前
1分钟前
1分钟前
大个应助louis采纳,获得10
1分钟前
畅快甜瓜发布了新的文献求助10
1分钟前
Robot完成签到 ,获得积分10
1分钟前
1分钟前
CipherSage应助畅快甜瓜采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
jy发布了新的文献求助10
1分钟前
1分钟前
louis发布了新的文献求助10
1分钟前
shame完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
科研通AI6.1应助jy采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
空儒完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Muhammad发布了新的文献求助10
2分钟前
畅快甜瓜发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732177
求助须知:如何正确求助?哪些是违规求助? 5337212
关于积分的说明 15322034
捐赠科研通 4877874
什么是DOI,文献DOI怎么找? 2620700
邀请新用户注册赠送积分活动 1569938
关于科研通互助平台的介绍 1526542