Enhanced HTS Hit Selection via a Local Hit Rate Analysis

选择(遗传算法) 计算机科学 人工智能
作者
Bruce A. Posner,Hualin Simon Xi,James E. Mills
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:49 (10): 2202-2210 被引量:47
标识
DOI:10.1021/ci900113d
摘要

The postprocessing of high-throughput screening (HTS) results is complicated by the occurrence of false positives (inactive compounds misidentified as active by the primary screen) and false negatives (active compounds misidentified as inactive by the primary screen). An activity cutoff is frequently used to select "active" compounds from HTS data; however, this approach is insensitive to both false positives and false negatives. An alternative method that can minimize the occurrence of these artifacts will increase the efficiency of hit selection and therefore lead discovery. In this work, rather than merely using the activity of a given compound, we look at the presence and absence of activity among all compounds in its "chemical space neighborhood" to give a degree of confidence in its activity. We demonstrate that this local hit rate (LHR) analysis method outperforms hit selection based on ranking by primary screen activity values across ten diverse high throughput screens, spanning both cell-based and biochemical assay formats of varying biology and robustness. On average, the local hit rate analysis method was ∼2.3-fold and ∼1.3-fold more effective in identifying active compounds and active chemical series, respectively, than selection based on primary activity alone. Moreover, when applied to finding false negatives, this method was 2.3-fold better than ranking by primary activity alone. In most cases, novel hit series were identified that would have otherwise been missed. Additional uses of and observations regarding this HTS analysis approach are also discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhou发布了新的文献求助10
刚刚
刚刚
yang完成签到,获得积分10
1秒前
张nmky完成签到,获得积分10
1秒前
1秒前
FU_kyt完成签到 ,获得积分10
1秒前
村长热爱美丽完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
俊俊坨完成签到,获得积分10
5秒前
111发布了新的文献求助10
5秒前
111发布了新的文献求助10
5秒前
喵星人发布了新的文献求助10
5秒前
wanwei完成签到,获得积分10
6秒前
闪闪的YOSH完成签到,获得积分10
6秒前
无花果应助路之遥兮采纳,获得10
6秒前
7秒前
7秒前
7秒前
杨breaking发布了新的文献求助10
7秒前
海盗船长完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
hyishu完成签到,获得积分10
8秒前
jq完成签到,获得积分10
9秒前
桑尼号完成签到,获得积分10
9秒前
敏感的手机完成签到 ,获得积分10
9秒前
黄花完成签到 ,获得积分10
9秒前
xxs完成签到,获得积分10
9秒前
9秒前
耍酷的卿应助小许采纳,获得10
10秒前
英俊芷完成签到,获得积分10
10秒前
minsu完成签到,获得积分10
10秒前
惊鸿客完成签到,获得积分10
10秒前
ri_290完成签到,获得积分10
10秒前
幽默的煎饼完成签到,获得积分10
11秒前
新帅完成签到,获得积分10
12秒前
贪玩钢铁侠完成签到,获得积分10
12秒前
ASUKA完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765527
求助须知:如何正确求助?哪些是违规求助? 5561576
关于积分的说明 15409288
捐赠科研通 4900231
什么是DOI,文献DOI怎么找? 2636244
邀请新用户注册赠送积分活动 1584487
关于科研通互助平台的介绍 1539736