Enhanced HTS Hit Selection via a Local Hit Rate Analysis

选择(遗传算法) 计算机科学 人工智能
作者
Bruce A. Posner,Hualin Simon Xi,James E. Mills
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:49 (10): 2202-2210 被引量:47
标识
DOI:10.1021/ci900113d
摘要

The postprocessing of high-throughput screening (HTS) results is complicated by the occurrence of false positives (inactive compounds misidentified as active by the primary screen) and false negatives (active compounds misidentified as inactive by the primary screen). An activity cutoff is frequently used to select "active" compounds from HTS data; however, this approach is insensitive to both false positives and false negatives. An alternative method that can minimize the occurrence of these artifacts will increase the efficiency of hit selection and therefore lead discovery. In this work, rather than merely using the activity of a given compound, we look at the presence and absence of activity among all compounds in its "chemical space neighborhood" to give a degree of confidence in its activity. We demonstrate that this local hit rate (LHR) analysis method outperforms hit selection based on ranking by primary screen activity values across ten diverse high throughput screens, spanning both cell-based and biochemical assay formats of varying biology and robustness. On average, the local hit rate analysis method was ∼2.3-fold and ∼1.3-fold more effective in identifying active compounds and active chemical series, respectively, than selection based on primary activity alone. Moreover, when applied to finding false negatives, this method was 2.3-fold better than ranking by primary activity alone. In most cases, novel hit series were identified that would have otherwise been missed. Additional uses of and observations regarding this HTS analysis approach are also discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真的幻姬完成签到,获得积分10
刚刚
ao发布了新的文献求助10
刚刚
刚刚
刚刚
柔弱成协完成签到 ,获得积分10
1秒前
1秒前
何故完成签到,获得积分10
1秒前
浮游应助江湖边缘人采纳,获得10
1秒前
科研通AI6应助橙啊程采纳,获得10
1秒前
善学以致用应助nihao采纳,获得10
1秒前
称心刺猬发布了新的文献求助10
2秒前
飘逸映冬发布了新的文献求助10
2秒前
菩桃完成签到 ,获得积分20
2秒前
Dz1990m完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
asdfzxcv应助喵喵采纳,获得10
4秒前
哈哈哈哈发布了新的文献求助10
4秒前
4秒前
CipherSage应助搬砖的采纳,获得10
4秒前
饱满问安完成签到,获得积分10
5秒前
呵呵呵呵呵呵123完成签到,获得积分10
5秒前
5秒前
芋泥啵啵发布了新的文献求助10
6秒前
leuchten发布了新的文献求助10
6秒前
6秒前
后来完成签到,获得积分10
6秒前
bud完成签到 ,获得积分10
7秒前
SmileLin完成签到,获得积分10
7秒前
烂漫的金针菇完成签到,获得积分10
7秒前
7秒前
大模型应助zzz采纳,获得10
7秒前
Criminology34应助江湖边缘人采纳,获得10
8秒前
9秒前
雪白的威完成签到,获得积分10
9秒前
CodeCraft应助echo采纳,获得10
10秒前
LAOA发布了新的文献求助10
10秒前
lieeey发布了新的文献求助20
10秒前
浮游应助烂漫的金针菇采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647168
求助须知:如何正确求助?哪些是违规求助? 4773018
关于积分的说明 15038081
捐赠科研通 4805852
什么是DOI,文献DOI怎么找? 2570007
邀请新用户注册赠送积分活动 1526881
关于科研通互助平台的介绍 1485983