催化作用
化学物理
多相催化
基本反应
氨生产
扫描隧道显微镜
吸附
化学
产量(工程)
不变(物理)
纳米技术
材料科学
物理化学
热力学
物理
动力学
有机化学
经典力学
量子力学
标识
DOI:10.1002/anie.199012191
摘要
Abstract Despite the great importance of heterogeneous catalysis, research in this field has long been characterized by its empiricism. Now, however, thanks to the rapid development of methods in surface physics, the elementary steps can be identified at the atomic level and the underlying principles understood. Defined single crystal surfaces are employed as models, based on the analysis of the surfaces of ‘real’ catalysts. Direct images, with atomic resolution, can be obtained using scanning tunneling microscopy, while electron spectroscopic methods yield detailed information on the bonding state of adsorbed species and the influence of catalyst additives (promotors) upon them. The successful application of this approach is illustrated with reference to the elucidation of the mechanism of ammonia synthesis. The catalyst surface is usually transformed under reaction conditions, and, as the processes involved are far‐removed from equilibrium, such transformations can lead to intrinsic spatial and temporal self‐organization phenomena. In this case, the reaction rate may not remain constant under otherwise invariant conditions but will change periodically or exhibit chaotic behavior, with the formation of spatial patterns on the catalyst surface.
科研通智能强力驱动
Strongly Powered by AbleSci AI