Using boosted regression trees to explore key factors controlling saturated and near‐saturated hydraulic conductivity

渗透计 导水率 Pedotransfer函数 土壤科学 土壤水分 饱和(图论) 土壤质地 大孔隙 环境科学 化学 数学 生物化学 介孔材料 组合数学 催化作用
作者
Helena Jorda,Michel Bechtold,Nicholas Jarvis,John Koestel
出处
期刊:European Journal of Soil Science [Wiley]
卷期号:66 (4): 744-756 被引量:68
标识
DOI:10.1111/ejss.12249
摘要

Summary Hydraulic conductivity at and near saturation is difficult to predict. We investigated, for the first time, the potential of boosted regression trees to identify the key factors that determine saturated and near‐saturated hydraulic conductivities in undisturbed soils with a global meta‐database of tension infiltrometer measurements. Our results demonstrate that pedotransfer functions developed from meta‐databases may strongly over‐estimate prediction performance unless they are validated against each individual data source separately. For such a source‐wise cross‐validation, we estimated the hydraulic conductivity at a tension of 10 cm ( K 10 ) and the saturated hydraulic conductivity ( K s ) with coefficients of determination of 0.36 and 0.15, respectively. The most important predictors for K 10 were the average annual precipitation and temperature at the measurement location, which are key variables for pedogenesis and constrain soil management. More research is required for the in‐depth interpretation of their influence on hydraulic conductivity. The soil clay and organic carbon contents were also important predictors of K 10 , with hydraulic conductivity decreasing as organic carbon contents increased up to 1.5% and as clay contents increased between about 10 and 40%. The direction of the tension‐sequence with which the infiltrometer data were collected was also a significant predictor. Land use and bulk density were the most important predictors for K s . The direction of the tension‐sequence and the soil texture class were also important, with both coarse and fine‐textured soils generally having larger K s values than medium‐textured soils.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮惜天发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
fangfang完成签到,获得积分10
1秒前
gusgusgus完成签到,获得积分10
1秒前
12345完成签到,获得积分10
1秒前
蓝色白羊发布了新的文献求助10
2秒前
yyy0820发布了新的文献求助10
2秒前
茶米发布了新的文献求助10
2秒前
2秒前
桂花乌龙完成签到,获得积分10
2秒前
zs完成签到 ,获得积分10
2秒前
Jinna706完成签到,获得积分10
2秒前
3秒前
mryjdy发布了新的文献求助10
3秒前
化学小白发布了新的文献求助10
4秒前
11111发布了新的文献求助10
4秒前
蘑菇丰收发布了新的文献求助10
5秒前
SciGPT应助玉米采纳,获得10
5秒前
5秒前
5秒前
6秒前
是啊余啊完成签到,获得积分10
6秒前
6秒前
Yxian发布了新的文献求助10
6秒前
Singularity应助dwd1w采纳,获得10
6秒前
自觉冷松发布了新的文献求助10
7秒前
Littboshi关注了科研通微信公众号
8秒前
寻风完成签到,获得积分10
8秒前
10秒前
10秒前
汉堡包应助biubiuu采纳,获得10
11秒前
cheng完成签到 ,获得积分10
12秒前
111发布了新的文献求助10
12秒前
科研通AI6.1应助勤奋以山采纳,获得30
12秒前
领导范儿应助木香采纳,获得10
13秒前
勋章完成签到 ,获得积分10
13秒前
菠菜发布了新的文献求助30
13秒前
13秒前
幸福幻巧应助语安采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207