Biomarkers of liver fibrosis

医学 生物标志物 肝活检 纤维化 人口 脂肪肝 非酒精性脂肪肝 肝病 疾病 内科学 活检 生物信息学 生物 生物化学 环境卫生
作者
Leon A. Adams
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:26 (5): 802-809 被引量:95
标识
DOI:10.1111/j.1440-1746.2010.06612.x
摘要

Abstract Fibrosis prediction is an essential part of the assessment and management of patients with chronic liver disease. Blood‐based biomarkers offer a number of advantages over the traditional standard of fibrosis assessment of liver biopsy, including safety, cost‐savings and wide spread accessibility. Current biomarker algorithms include indirect surrogate measures of fibrosis, including aminotransaminases and platelet count, or direct measures of fibrinogenesis or fibrinolysis such as hyaluronic acid and tissue inhibitor of metalloproteinase‐1. A number of algorithms have now been validated across a range of chronic liver disease including chronic viral hepatitis, alcoholic and non‐alcoholic fatty liver disease. Furthermore, several models have been demonstrated to be dynamic to changes in fibrosis over time and are predictive of liver‐related survival and overall survival to a greater degree than liver biopsy. Current limitations of biomarker models include a significant indeterminate range, and a predictive ability that is limited to only a few stages of fibrosis. Utilization of these biomarker models requires knowledge of patient co‐morbidities which may produce false positive or negative results in a small proportion of individuals. Furthermore, knowledge of the underlying prevalence of fibrosis in the patient population is required for interpretation of the positive or negative predictive values of a test result. Novel proteins identified by proteomic technology and genetic polymorphisms from genome association studies offer the possibility for further refinement and individualization of biomarker fibrosis models in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燕燕发布了新的文献求助10
刚刚
柒柒关注了科研通微信公众号
1秒前
1秒前
橘子橙发布了新的文献求助10
1秒前
思源应助自然的城采纳,获得10
2秒前
专注的远山完成签到,获得积分20
3秒前
科研通AI2S应助白苏采纳,获得10
3秒前
3秒前
20224273发布了新的文献求助10
4秒前
脑洞疼应助哈哈采纳,获得10
4秒前
务实伊关注了科研通微信公众号
5秒前
5秒前
5秒前
6秒前
鲁杨发布了新的文献求助10
7秒前
土豆完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
Xu完成签到,获得积分10
8秒前
yanglian2003发布了新的文献求助10
8秒前
自然的qm完成签到,获得积分20
9秒前
9秒前
谢谢完成签到,获得积分20
10秒前
程程发布了新的文献求助30
10秒前
务实的数据线应助葫芦采纳,获得20
10秒前
墨小杭发布了新的文献求助10
11秒前
12秒前
居易何难发布了新的文献求助10
12秒前
好困应助Corn_Dog采纳,获得10
12秒前
少静发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
香蕉觅云应助Apple采纳,获得10
14秒前
单身的远山完成签到,获得积分20
15秒前
谢谢发布了新的文献求助10
16秒前
科目三应助鲁杨采纳,获得10
17秒前
JamesPei应助烂漫的汲采纳,获得10
17秒前
17秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Handbook of Qualitative Research 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129368
求助须知:如何正确求助?哪些是违规求助? 2780183
关于积分的说明 7746679
捐赠科研通 2435368
什么是DOI,文献DOI怎么找? 1294055
科研通“疑难数据库(出版商)”最低求助积分说明 623518
版权声明 600542