流出物
灌溉
氧氟沙星
甲氧苄啶
磺胺甲恶唑
废水
污水处理
环境科学
地下水
环境化学
环境工程
抗生素
化学
农学
生物
环丙沙星
地质学
岩土工程
生物化学
作者
Alison M. Franklin,Clinton F. Williams,John E. Watson
标识
DOI:10.2134/jeq2018.02.0076
摘要
With low levels of human antibiotics in the environment due to release of wastewater treatment plant (WWTP) effluent, concern is rising about impacts on human health and antibiotic resistance development. Furthermore, WWTP effluent may be released into waterways used as drinking water sources. The aim of this study was to analyze three antibiotics important to human health (sulfamethoxazole, ofloxacin, and trimethoprim) in soil and groundwater at a long-term wastewater reuse system that spray irrigates effluent. Soil samples were collected (i) at a site that had not received irrigation for 7 mo (approximate background concentrations), and then at the same site after (ii) one irrigation event and (iii) 10 wk of irrigation. Water samples were collected three times per year to capture seasonal variability. Sulfamethoxazole was typically at the highest concentrations in effluent (22 ± 3.7 μg L) with ofloxacin and trimethoprim at 2.2 ± 0.6 and 1.0 ± 0.02 μg L, respectively. In the soil, ofloxacin had the highest background concentrations (650 ± 204 ng kg), whereas concentrations of sulfamethoxazole were highest after continuous effluent irrigation (730 ± 360 ng kg). Trimethoprim was only quantified in soil after 10 wk of effluent irrigation (190 ± 71 ng kg). Groundwater concentrations were typically <25 ng L with high concentrations of 660 ± 20 and 67 ± 7.0 ng L for sulfamethoxazole and ofloxacin, respectively. Given that antibiotics interacted with the soil profile and groundwater concentrations were frequently about 1000-fold lower than effluent, soil may be an adequate tertiary treatment for WWTP effluent leading to improved water quality and protection of human health.
科研通智能强力驱动
Strongly Powered by AbleSci AI