同质结
能量转换效率
钙钛矿(结构)
材料科学
光电子学
异质结
载流子
光伏系统
钙钛矿太阳能电池
化学
结晶学
电气工程
工程类
作者
Peng Cui,Dong Wei,Jun Ji,Hao Huang,Endong Jia,Shangyi Dou,Tianyue Wang,Wenjing Wang,Meicheng Li
出处
期刊:Nature Energy
[Springer Nature]
日期:2019-02-04
卷期号:4 (2): 150-159
被引量:454
标识
DOI:10.1038/s41560-018-0324-8
摘要
Perovskite solar cells (PSCs) have emerged as an attractive photovoltaic technology thanks to their outstanding power conversion efficiency (PCE). Further improvement in the device efficiency is limited by the recombination of the charge carriers in the perovskite layer even when employing heterojunction-based architectures. Here, we propose and demonstrate a p-type perovskite/n-type perovskite homojunction whose built-in electric field promotes oriented transport of the photo-induced carriers, thus reducing carrier recombination losses. By controlling the stoichiometry of the perovskite precursors, we are able to induce n-type or p-type doping. We integrate the homojunction structure in a planar PSC combining a thermally evaporated p-type perovskite layer on a solution-processed n-type perovskite layer. The PSC with a MAPbI3 homojunction achieves a PCE of 20.80% (20.5% certified PCE), whereas the PSC based on a FA0.15MA0.85PbI3 homojunction delivers a PCE of 21.38%. We demonstrate that the homojunction structure is an effective approach, beyond existing planar heterojunction PSCs, to achieve highly efficient PSCs with reduced carrier recombination losses. Carrier recombination limits the power conversion efficiency of perovskite solar cells. Here the authors construct a planar p–n homojunction perovskite solar cell to promote the oriented transport of carriers and reduce recombination, thus enabling power conversion efficiency of 21.3%.
科研通智能强力驱动
Strongly Powered by AbleSci AI