Machine Learning-based Analysis of Rectal Cancer MRI Radiomics for Prediction of Metachronous Liver Metastasis

无线电技术 特征选择 医学 支持向量机 接收机工作特性 人工智能 逻辑回归 特征(语言学) 放射科 结直肠癌 交叉验证 计算机科学 机器学习 模式识别(心理学) 癌症 磁共振成像 内科学 哲学 语言学
作者
Meng Liang,Zhengting Cai,Hongmei Zhang,Chencui Huang,Yankai Meng,Li Zhao,Deng‐Feng Li,Xiaohong Ma,Xinming Zhao
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:26 (11): 1495-1504 被引量:64
标识
DOI:10.1016/j.acra.2018.12.019
摘要

To use machine learning-based magnetic resonance imaging radiomics to predict metachronous liver metastases (MLM) in patients with rectal cancer.This study retrospectively analyzed 108 patients with rectal cancer (54 in MLM group and 54 in nonmetastases group). Feature selection were performed in the radiomic feature sets extracted from images of T2-weighted image (T2WI) and venous phase (VP) sequence respectively, and the combining feature set with 2058 radiomic features incorporating two sequences with the least absolute shrinkage and selection operator method. Five-fold cross-validation and two machine learning algorithms (support vector machine [SVM]; logistic regression [LR]) were utilized for predictive model constructing. The diagnostic performance of the models was evaluated by receiver operating characteristic curves with indicators of accuracy, sensitivity, specificity and area under the curve, and compared by DeLong test.Five, 8, and 22 optimal features were selected from 1029 T2WI, 1029 VP, and 2058 combining features, respectively. Four-group models were constructed using the five T2WI features (ModelT2), the 8 VP features (ModelVP), the combined 13 optimal features (Modelcombined), and the 22 optimal features selected from 2058 features (Modeloptimal). In ModelVP, the LR was superior to the SVM algorithm (P = 0.0303). The Modeloptimal using LR algorithm showed the best prediction performance (P = 0.0019-0.0081) with accuracy, sensitivity, specificity, and area under the curve of 0.80, 0.83, 0.76, and 0.87, respectively.Radiomics models based on baseline rectal magnetic resonance imaging has high potential for MLM prediction, especially the Modeloptimal using LR algorithm. Moreover, except for ModelVP, the LR was not superior to the SVM algorithm for model construction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林一发布了新的文献求助10
刚刚
刚刚
刚刚
传奇3应助十二采纳,获得10
刚刚
刚刚
无情向薇应助抹香鲸采纳,获得10
刚刚
大脑袋应助抹香鲸采纳,获得30
1秒前
彭日晓完成签到,获得积分20
1秒前
黄石完成签到,获得积分10
1秒前
yeye发布了新的文献求助30
2秒前
2秒前
小马甲应助滕擎采纳,获得10
2秒前
重大化工小白完成签到,获得积分10
3秒前
kk完成签到,获得积分10
3秒前
卢立欣完成签到,获得积分10
3秒前
Owen应助HJJHJH采纳,获得30
3秒前
3秒前
木子李发布了新的文献求助10
3秒前
合适台灯发布了新的文献求助30
3秒前
泥泥发布了新的文献求助10
4秒前
科研韭菜发布了新的文献求助10
4秒前
4秒前
xx发布了新的文献求助10
5秒前
5秒前
大个应助铜豌豆采纳,获得10
6秒前
7秒前
Tinmuse发布了新的文献求助10
7秒前
科研通AI2S应助文艺甜瓜采纳,获得10
7秒前
8秒前
9秒前
抹香鲸完成签到,获得积分20
9秒前
9秒前
9秒前
10秒前
科研通AI2S应助合适台灯采纳,获得30
10秒前
清爽雁开发布了新的文献求助10
10秒前
Chris学长完成签到,获得积分10
10秒前
10秒前
dreamrain完成签到,获得积分10
11秒前
景行完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951758
求助须知:如何正确求助?哪些是违规求助? 3497124
关于积分的说明 11086059
捐赠科研通 3227597
什么是DOI,文献DOI怎么找? 1784497
邀请新用户注册赠送积分活动 868586
科研通“疑难数据库(出版商)”最低求助积分说明 801154