已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning-based Analysis of Rectal Cancer MRI Radiomics for Prediction of Metachronous Liver Metastasis

无线电技术 特征选择 医学 支持向量机 接收机工作特性 人工智能 逻辑回归 特征(语言学) 放射科 结直肠癌 交叉验证 计算机科学 机器学习 模式识别(心理学) 癌症 磁共振成像 内科学 哲学 语言学
作者
Meng Liang,Zhengting Cai,Hongmei Zhang,Chencui Huang,Yankai Meng,Li Zhao,Deng‐Feng Li,Xiaohong Ma,Xinming Zhao
出处
期刊:Academic Radiology [Elsevier]
卷期号:26 (11): 1495-1504 被引量:59
标识
DOI:10.1016/j.acra.2018.12.019
摘要

To use machine learning-based magnetic resonance imaging radiomics to predict metachronous liver metastases (MLM) in patients with rectal cancer.This study retrospectively analyzed 108 patients with rectal cancer (54 in MLM group and 54 in nonmetastases group). Feature selection were performed in the radiomic feature sets extracted from images of T2-weighted image (T2WI) and venous phase (VP) sequence respectively, and the combining feature set with 2058 radiomic features incorporating two sequences with the least absolute shrinkage and selection operator method. Five-fold cross-validation and two machine learning algorithms (support vector machine [SVM]; logistic regression [LR]) were utilized for predictive model constructing. The diagnostic performance of the models was evaluated by receiver operating characteristic curves with indicators of accuracy, sensitivity, specificity and area under the curve, and compared by DeLong test.Five, 8, and 22 optimal features were selected from 1029 T2WI, 1029 VP, and 2058 combining features, respectively. Four-group models were constructed using the five T2WI features (ModelT2), the 8 VP features (ModelVP), the combined 13 optimal features (Modelcombined), and the 22 optimal features selected from 2058 features (Modeloptimal). In ModelVP, the LR was superior to the SVM algorithm (P = 0.0303). The Modeloptimal using LR algorithm showed the best prediction performance (P = 0.0019-0.0081) with accuracy, sensitivity, specificity, and area under the curve of 0.80, 0.83, 0.76, and 0.87, respectively.Radiomics models based on baseline rectal magnetic resonance imaging has high potential for MLM prediction, especially the Modeloptimal using LR algorithm. Moreover, except for ModelVP, the LR was not superior to the SVM algorithm for model construction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
tsuki完成签到 ,获得积分10
4秒前
ca完成签到,获得积分10
5秒前
笑点低冰夏应助huang采纳,获得30
8秒前
情怀应助rena521采纳,获得10
8秒前
lvsehx发布了新的文献求助10
8秒前
8秒前
华仔应助ava采纳,获得10
11秒前
12秒前
保佑我毕业完成签到 ,获得积分10
13秒前
旱田蜗牛发布了新的文献求助10
14秒前
独特雁玉完成签到,获得积分10
16秒前
英姑应助ca采纳,获得10
17秒前
18秒前
18秒前
顺利又菱发布了新的文献求助10
19秒前
19秒前
21秒前
miyavi应助完美的海秋采纳,获得30
21秒前
22秒前
22秒前
汉堡包应助scxl2000采纳,获得10
22秒前
ava发布了新的文献求助10
22秒前
阿怪发布了新的文献求助10
23秒前
斯文败类应助开心的万天采纳,获得10
23秒前
白衣发布了新的文献求助10
23秒前
25秒前
郑郑发布了新的文献求助10
26秒前
owlhealth发布了新的文献求助10
27秒前
CXC发布了新的文献求助10
28秒前
孤独梦安发布了新的文献求助10
30秒前
DLDL发布了新的文献求助10
30秒前
30秒前
韦浩浩给韦浩浩的求助进行了留言
33秒前
踏实的傲白完成签到 ,获得积分10
35秒前
袁大头发布了新的文献求助10
37秒前
39秒前
39秒前
40秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265340
求助须知:如何正确求助?哪些是违规求助? 2905273
关于积分的说明 8333298
捐赠科研通 2575620
什么是DOI,文献DOI怎么找? 1399971
科研通“疑难数据库(出版商)”最低求助积分说明 654613
邀请新用户注册赠送积分活动 633497