Nanocomposites of Ag3PO4 and Phosphorus-Doped Graphitic Carbon Nitride for Ketamine Removal

石墨氮化碳 化学 光催化 降级(电信) 纳米复合材料 核化学 氮化碳 无机化学 材料科学 催化作用 纳米技术 有机化学 计算机科学 电信
作者
Changsheng Guo,Miao Chen,Linlin Wu,Yingying Pei,Chunhua Hu,Yuan Zhang,Jian Xu
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:2 (5): 2817-2829 被引量:33
标识
DOI:10.1021/acsanm.9b00295
摘要

As one of the most abused illicit drugs, ketamine (KET) has been widely detected in different water environments around the globe, which necessitates the development of effective approaches for KET removal from water. In the present study, several novel Ag3PO4/P-g-C3N4 heterojunction composites were successfully constructed using an in situ growth method, and the samples were characterized by a series of instruments. The synthesized samples were deployed for KET degradation. Results showed that Ag3PO4/P-g-C3N4 (1:1) exhibited the most excellent photocatalytic degradation performance on KET with a pseudo-first-order rate constant of 0.0326 min–1 at a neutral pH value, which was 3- and 6-fold faster than those of Ag3PO4 and P-g-C3N4, respectively. The elevated photocatalytic performance of Ag3PO4/P-g-C3N4 was attributed to the synergistic effects of the high charge separation capacity and Z-scheme heterojunction structure. Low concentrations of dissolved organic matter, nitrate, or bicarbonate accelerated KET degradation by Ag3PO4/P-g-C3N4, but high levels of these constituents would inhibit KET degradation. The scavenging experiments revealed that photogenerated superoxide radicals and holes were the main reactive species in the KET removal. A total of 12 degradation intermediates of KET over Ag3PO4/P-g-C3N4 were identified, and a possible degradation pathway was proposed. Demethylation, dehydrogenation, hydroxylation, deamination, ring opening, and sodium modification were the major pathways for KET degradation. Ag3PO4/P-g-C3N4 also exhibited a relatively good photocatalytic performance on KET degradation in surface water and a secondary effluent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张嘉伟发布了新的文献求助10
刚刚
vv完成签到,获得积分10
刚刚
zzzz应助生生不息采纳,获得30
1秒前
1秒前
1秒前
De.完成签到 ,获得积分10
1秒前
李健应助俊男采纳,获得10
1秒前
子车安寒发布了新的文献求助30
1秒前
科研小虫虫完成签到,获得积分10
2秒前
黑布林大李子完成签到,获得积分0
3秒前
宝宝巴士完成签到 ,获得积分20
3秒前
Orange应助1234采纳,获得30
3秒前
Ava应助a初心不变采纳,获得10
3秒前
Appeach发布了新的文献求助10
3秒前
4秒前
难过乘风发布了新的文献求助10
4秒前
小殷完成签到,获得积分10
4秒前
搜集达人应助魔力兔子采纳,获得10
5秒前
5秒前
肖可乐应助ASHDSN采纳,获得10
5秒前
走远了完成签到,获得积分10
5秒前
小欧文完成签到,获得积分10
5秒前
勤奋流沙完成签到 ,获得积分10
5秒前
YUE完成签到,获得积分10
6秒前
余生发布了新的文献求助10
6秒前
甜蜜的笑白完成签到,获得积分10
6秒前
popo发布了新的文献求助10
7秒前
alick完成签到,获得积分10
7秒前
7秒前
xc完成签到,获得积分10
7秒前
蓝胖子完成签到,获得积分20
7秒前
7788999发布了新的文献求助20
8秒前
不晚完成签到,获得积分10
8秒前
xingxing完成签到,获得积分10
8秒前
66完成签到,获得积分10
8秒前
9秒前
10秒前
爆米花应助NuYoah采纳,获得10
10秒前
单纯的静曼完成签到,获得积分10
10秒前
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
An Introduction to Child Language 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299125
求助须知:如何正确求助?哪些是违规求助? 2934137
关于积分的说明 8467404
捐赠科研通 2607589
什么是DOI,文献DOI怎么找? 1423778
科研通“疑难数据库(出版商)”最低求助积分说明 661689
邀请新用户注册赠送积分活动 645351